Publications by authors named "Baxa U"

The National Cryo-Electron Microscopy Facility (NCEF) at the National Cancer Institute was launched in May of 2017 to provide free and rapid access to high resolution cryo-EM data collection to United States researchers working on problems of broad general relevance to cancer biology. The decision about suitability of projects for data collection is made on a first-come, first-served basis by NCEF staff, and is based solely on the quality of the screening images provided without need for a scientific proposal. Here, we provide an overview of the operation of the facility, typical data collection procedures and some insights that have emerged from the structures reported from data collected at the facility.

View Article and Find Full Text PDF

The P22 tailspike endorhamnosidase confers the high specificity of bacteriophage P22 for some serogroups of differing only slightly in their O-antigen polysaccharide. We used several biophysical methods to study the binding and hydrolysis of O-antigen fragments of different lengths by P22 tailspike protein. O-Antigen saccharides of defined length labeled with fluorophors could be purified with higher resolution than previously possible.

View Article and Find Full Text PDF

Polo-like kinase 4 (Plk4) is a key regulator of centriole biogenesis. Studies have shown that Plk4 undergoes dynamic relocalization from a ring-like pattern around a centriole to a dot-like morphology at the procentriole assembly site and this event is central for inducing centriole biogenesis. However, the detailed mechanisms underlying Plk4's capacity to drive its symmetry-breaking ring-to-dot relocalization remain largely unknown.

View Article and Find Full Text PDF

Western, Eastern, and Venezuelan equine encephalitis viruses (WEEV, EEEV, and VEEV, respectively) are important mosquito-borne agents that pose public health and bioterrorism threats. Despite considerable advances in understanding alphavirus replication, there are currently no available effective vaccines or antiviral treatments against these highly lethal pathogens. To develop a potential countermeasure for viral encephalitis, we generated a trivalent, or three-component, EEV vaccine composed of virus-like particles (VLPs).

View Article and Find Full Text PDF

In the version of this article initially published, the labels (50 Å) above the scale bars in Fig. 1b were incorrect. The correct size is 50 nm.

View Article and Find Full Text PDF

Wnt signaling is one of the key regulators of hepatocellular carcinoma (HCC) tumor progression. In addition to the classical receptor frizzled (FZD), various coreceptors including heparan sulfate proteoglycans (HSPGs) are involved in Wnt activation. Glypican-3 (GPC3) is an HSPG that is overexpressed in HCC and functions as a Wnt coreceptor that modulates HCC cell proliferation.

View Article and Find Full Text PDF

The present vaccine against influenza virus has the inevitable risk of antigenic discordance between the vaccine and the circulating strains, which diminishes vaccine efficacy. This necessitates new approaches that provide broader protection against influenza. Here we designed a vaccine using the hypervariable receptor-binding domain (RBD) of viral hemagglutinin displayed on a nanoparticle (np) able to elicit antibody responses that neutralize H1N1 influenza viruses spanning over 90 years.

View Article and Find Full Text PDF

Parainfluenza virus types 1-4 (PIV1-4) are highly infectious human pathogens, of which PIV3 is most commonly responsible for severe respiratory illness in newborns, elderly, and immunocompromised individuals. To obtain a vaccine effective against all four PIV types, we engineered mutations in each of the four PIV fusion (F) glycoproteins to stabilize their metastable prefusion states, as such stabilization had previously enabled the elicitation of high-titer neutralizing antibodies against the related respiratory syncytial virus. A cryoelectron microscopy structure of an engineered PIV3 F prefusion-stabilized trimer, bound to the prefusion-specific antibody PIA174, revealed atomic-level details for how introduced mutations improved stability as well as how a single PIA174 antibody recognized the trimeric apex of prefusion PIV3 F.

View Article and Find Full Text PDF

There is significant current interest in identifying new combination therapies that synergize to treat disease, and it is becoming increasingly clear that the temporal resolution of their administration greatly impacts efficacy. To facilitate effective delivery, a multicompartment hydrogel material was developed that is composed of spherical vesicles interlaced within a self-assembled peptide-based network of physically crosslinked fibrils that allows time-resolved independent co-delivery of small molecules. This material architecture effectively delivers the EGFR kinase inhibitor Erlotinib (ERL) and Doxorubicin (DOX, DNA intercalator) in an ERL→DOX sequential manner to synergistically kill glioblastoma, the most aggressive form of brain cancer.

View Article and Find Full Text PDF

Virtually the entire surface of the HIV-1-envelope trimer is recognized by neutralizing antibodies, except for a highly glycosylated region at the center of the "silent face" on the gp120 subunit. From an HIV-1-infected donor, #74, we identified antibody VRC-PG05, which neutralized 27% of HIV-1 strains. The crystal structure of the antigen-binding fragment of VRC-PG05 in complex with gp120 revealed an epitope comprised primarily of N-linked glycans from N262, N295, and N448 at the silent face center.

View Article and Find Full Text PDF

Antigen multimerization on a nanoparticle can result in improved neutralizing antibody responses. A platform that has been successfully used for displaying antigens from a number of different viruses is ferritin, a self-assembling protein nanoparticle that allows the attachment of multiple copies (24 monomers or 8 trimers) of a single antigen. Here, we design two-component ferritin variants that allow the attachment of two different antigens on a single particle in a defined ratio and geometric pattern.

View Article and Find Full Text PDF

The elicitation of autologous neutralizing responses by immunization with HIV-1 envelope (Env) trimers conformationally stabilized in a prefusion closed state has generated considerable interest in the HIV-1 vaccine field. However, soluble prefusion closed Env trimers have been produced from only a handful of HIV-1 strains, limiting their utility as vaccine antigens and B cell probes. Here, we report the engineering from 81 HIV-1 strains of soluble, fully cleaved, prefusion Env trimers with appropriate antigenicity.

View Article and Find Full Text PDF

TEM is an important method for the characterization of size and shape of nanoparticles as it can directly visualize single particles and even their inner architecture. Imaging of metal particles in the electron microscope is quite straightforward due to their high density and stable structure, but the structure of soft material nanoparticles, such as liposomes, needs to be preserved for the electron microscope. The best method to visualize liposomes close to their native structure is cryo-electron microscopy, where thin films of suspensions are plunge frozen to create vitrified ice films that can be imaged directly in the electron microscope under liquid nitrogen temperature.

View Article and Find Full Text PDF

Immunoelectron microscopy (IEM) on a solid phase such as a carbon film is a fast and powerful way to detect and visualize surface antigens on nanoparticles by using a transmission electron microscope (TEM). Nanoparticles, in particular ones for medical applications, are often modified on the surface with soft materials to make them more soluble, less toxic, or targetable to cancerous tumors. Imaging the soft material on the surface of solid nanoparticles by electron microscopy is often a challenge.

View Article and Find Full Text PDF
Article Synopsis
  • Bovine respiratory syncytial virus (BRSV) is a significant cause of respiratory illness in calves and is closely related to human RSV, which affects infants.
  • Researchers created a modified version of the BRSV fusion glycoprotein, named "DS2," that maintains its prefusion state and generates a stronger immune response compared to the traditional post-fusion form.
  • Immunized calves showed no signs of infection when exposed to BRSV, demonstrating that the DS2-stabilized immunogen effectively induced protective immunity, which has implications for both bovine health and the development of human RSV vaccines.
View Article and Find Full Text PDF

Selenocysteine synthase (SepSecS) catalyzes the terminal reaction of selenocysteine, and is vital for human selenoproteome integrity. Autosomal recessive inheritance of mutations in SepSecS-Ala239Thr, Thr325Ser, Tyr334Cys and Tyr429*-induced severe, early-onset, neurological disorders in distinct human populations. Although harboring different mutant alleles, patients presented remarkably similar phenotypes typified by cerebellar and cerebral atrophy, seizures, irritability, ataxia, and extreme spasticity.

View Article and Find Full Text PDF

Human cytomegalovirus encodes at least 25 membrane glycoproteins that are found in the viral envelope(1). While gB represents the fusion protein, two glycoprotein complexes control the tropism of the virus: the gHgLgO trimer is involved in the infection of fibroblasts, and the gHgLpUL128L pentamer is required for infection of endothelial, epithelial and myeloid cells(2-5). Two reports suggested that gB binds to ErbB1 and PDGFRα (refs 6,7); however, these results do not explain the tropism of the virus and were recently challenged(8,9).

View Article and Find Full Text PDF

Unlabelled: : Niemann-Pick disease type A (NPA) is a lysosomal storage disease caused by mutations in the SMPD1 gene that encodes acid sphingomyelinase (ASM). Deficiency in ASM function results in lysosomal accumulation of sphingomyelin and neurodegeneration. Currently, there is no effective treatment for NPA.

View Article and Find Full Text PDF

Structure-based design of vaccines, particularly the iterative optimization used so successfully in the structure-based design of drugs, has been a long-sought goal. We previously developed a first-generation vaccine antigen called DS-Cav1, comprising a prefusion-stabilized form of the fusion (F) glycoprotein, which elicits high-titer protective responses against respiratory syncytial virus (RSV) in mice and macaques. Here we report the improvement of DS-Cav1 through iterative cycles of structure-based design that significantly increased the titer of RSV-protective responses.

View Article and Find Full Text PDF

Antibodies capable of neutralizing divergent influenza A viruses could form the basis of a universal vaccine. Here, from subjects enrolled in an H5N1 DNA/MIV-prime-boost influenza vaccine trial, we sorted hemagglutinin cross-reactive memory B cells and identified three antibody classes, each capable of neutralizing diverse subtypes of group 1 and group 2 influenza A viruses. Co-crystal structures with hemagglutinin revealed that each class utilized characteristic germline genes and convergent sequence motifs to recognize overlapping epitopes in the hemagglutinin stem.

View Article and Find Full Text PDF
Article Synopsis
  • - The HIV-1 envelope trimer is shielded by approximately 90 N-linked sugars, making up about half of its mass, which helps the virus evade immune responses.
  • - Researchers crystallized fully glycosylated Env trimers from different clades and analyzed their structures at high resolution, revealing a complex network of sugars that protect the viral proteins from antibodies.
  • - The study found that the arrangement of these sugars varies in terms of order and interaction, impacting how broadly neutralizing antibodies can recognize and bind to the virus, highlighting the diversity in oligosaccharide affinity needed for effective neutralization.
View Article and Find Full Text PDF

Ebola virus causes hemorrhagic fever with a high case fatality rate for which there is no approved therapy. Two human monoclonal antibodies, mAb100 and mAb114, in combination, protect nonhuman primates against all signs of Ebola virus disease, including viremia. Here, we demonstrate that mAb100 recognizes the base of the Ebola virus glycoprotein (GP) trimer, occludes access to the cathepsin-cleavage loop, and prevents the proteolytic cleavage of GP that is required for virus entry.

View Article and Find Full Text PDF

Cytosolic glutaminyl-tRNA synthetase (GlnRS) is the singular enzyme responsible for translation of glutamine codons. Compound heterozygous mutations in GlnRS cause severe brain disorders by a poorly understood mechanism. Herein, we present crystal structures of the wild type and two pathological mutants of human GlnRS, which reveal, for the first time, the domain organization of the intact enzyme and the structure of the functionally important N-terminal domain (NTD).

View Article and Find Full Text PDF

Broadly neutralizing antibodies (bNAbs) against HIV-1 Env V1V2 arise in multiple donors. However, atomic-level interactions had previously been determined only with antibodies from a single donor, thus making commonalities in recognition uncertain. Here we report the cocrystal structure of V1V2 with antibody CH03 from a second donor and model Env interactions of antibody CAP256-VRC26 from a third donor.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) represents a major global health problem. Though it is associated with infectious mononucleosis and ∼200,000 cancers annually worldwide, a vaccine is not available. The major target of immunity is EBV glycoprotein 350/220 (gp350) that mediates attachment to B cells through complement receptor 2 (CR2/CD21).

View Article and Find Full Text PDF