Bacillus anthracis lethal toxin (LT) was characterized in plasma from infected African Green monkeys, rabbits, and guinea pigs. In all cases, during the terminal phase of infection only the protease-activated 63-kDa form of protective antigen (PA(63)) and the residual 20-kDa fragment (PA(20)) were detected in the plasma. No uncut PA with a molecular mass of 83 kDa was detected in plasma from toxemic animals during the terminal stage of infection.
View Article and Find Full Text PDFA search query consisting of two aromatic centers and two cationic centers was defined based on previously identified small molecule inhibitors of the botulinum neurotoxin serotype A light chain (BoNT/A LC) and used to mine the National Cancer Institute Open Repository. Ten small molecule hits were identified, and upon testing, three demonstrated inhibitory activity. Of these, one was structurally unique, possessing a rigid diazachrysene scaffold.
View Article and Find Full Text PDFBotulinum neurotoxin serotype A is the most lethal of all known toxins. Here, we report the crystal structure, along with SAR data, of the zinc metalloprotease domain of BoNT/A bound to a potent peptidomimetic inhibitor (K(i)=41 nM) that resembles the local sequence of the SNAP-25 substrate. Surprisingly, the inhibitor adopts a helical conformation around the cleavage site, in contrast to the extended conformation of the native substrate.
View Article and Find Full Text PDFNonelectrolyte polymers of poly(ethylene glycol) (PEG) were used to estimate the diameter of the ion channel formed by the Bacillus anthracis protective antigen 63 (PA(63)). Based on the ability of different molecular weight PEGs to partition into the pore and reduce channel conductance, the pore appears to be narrower than the one formed by Staphylococcus aureus alpha-hemolysin. Numerical integration of the PEG sample mass spectra and the channel conductance data were used to refine the estimate of the pore's PEG molecular mass cutoff (approximately 1400 g/mol).
View Article and Find Full Text PDFWe report on the initial result of the coupling of 4-amino-7-chloroquinoline with steroidal and adamantane constituents to provide small molecules with excellent in vitro antimalarial activities (IC90 (W2) down to 6.74 nM). The same entities also inhibit the botulinum neurotoxin serotype A light chain metalloprotease at low micromolar levels (7-31 microM).
View Article and Find Full Text PDFWe developed a microarray platform by immobilizing bacterial 'signature' carbohydrates onto epoxide modified glass slides. The carbohydrate microarray platform was probed with sera from non-melioidosis and melioidosis (Burkholderia pseudomallei) individuals. The platform was also probed with sera from rabbits vaccinated with Bacillus anthracis spores and Francisella tularensis bacteria.
View Article and Find Full Text PDFBackground: Virus-like particle (VLP)-based vaccines have the advantage of being morphologically and antigenically similar to the live virus from which they are derived. Expression of the glycoprotein and VP40 matrix protein from Lake Victoria marburgvirus (MARV) results in spontaneous production of VLPs in mammalian cells. Guinea pigs vaccinated with Marburg virus VLPs (mVLPs) or inactivated MARV (iMARV) develop homologous humoral and T-cell responses and are completely protected from a lethal homologous MARV challenge.
View Article and Find Full Text PDFMultiple lung pathogens such as chemical agents, H5N1 avian flu, or SARS cause high lethality due to acute respiratory distress syndrome. Here we report that Toll-like receptor 4 (TLR4) mutant mice display natural resistance to acid-induced acute lung injury (ALI). We show that TLR4-TRIF-TRAF6 signaling is a key disease pathway that controls the severity of ALI.
View Article and Find Full Text PDFEbola virus (EBOV) causes highly lethal hemorrhagic fever that leads to death in up to 90% of infected humans. Like many other infections, EBOV induces massive lymphocyte apoptosis, which is thought to prevent the development of a functional adaptive immune response. In a lethal mouse model of EBOV infection, we show that there is an increase in expression of the activation/maturation marker CD44 in CD4(+) and CD8(+) T cells late in infection, preceding a dramatic rebound of lymphocyte numbers in the blood.
View Article and Find Full Text PDFRNA viruses are a significant source of morbidity and mortality in humans every year. Additionally, the potential use of these viruses in acts of bioterrorism poses a threat to national security. Given the paucity of vaccines or postexposure therapeutics for many highly pathogenic RNA viruses, novel treatments are badly needed.
View Article and Find Full Text PDFBackground: Currently, there are no licensed vaccines or therapeutics for the prevention or treatment of infection by the highly lethal filoviruses, Ebola virus (EBOV) and Marburg virus (MARV), in humans. We previously had demonstrated the protective efficacy of virus-like particle (VLP)-based vaccines against EBOV and MARV infection in rodents.
Methods: To determine the efficacy of vaccination with Ebola VLPs (eVLPs) in nonhuman primates, we vaccinated cynomolgus macaques with eVLPs containing EBOV glycoprotein (GP), nucleoprotein (NP), and VP40 matrix protein and challenged the macaques with 1000 pfu of EBOV.
Background: Virus-like particles (VLPs) of Ebola virus (EBOV) and Marburg virus (MARV) produced in human 293T embryonic kidney cells have been shown to be effective vaccines against filoviral infection. In this study, we explored alternative strategies for production of filovirus-like particle-based vaccines, to accelerate the development process. The goal of this work was to increase the yield of VLPs, while retaining their immunogenic properties.
View Article and Find Full Text PDFCurrent methods for inactivating filoviruses are limited to high doses of irradiation or formalin treatment, which may cause structural perturbations that are reflected by poor immunogenicity. In this report, we describe a novel inactivation technique for Zaire Ebola virus (ZEBOV) that uses the photoinduced alkylating probe 1,5-iodonaphthylazide (INA). INA is incorporated into lipid bilayers and, when activated by ultraviolet irradiation, alkylates the proteins therein.
View Article and Find Full Text PDFBudding of Ebola virus (EBOV) particles from the plasma membrane of infected cells requires viral and host proteins. EBOV virus matrix protein VP40 recruits TSG101, an ESCRT-1 (host cell endosomal sorting complex required for transport-1) complex protein in the vacuolar protein sorting (vps) pathway, to the plasma membrane during budding. Involvement of other vps proteins in EBOV budding has not been established.
View Article and Find Full Text PDFThe filoviruses, Ebola (EBOV) and Marburg (MARV), cause a lethal hemorrhagic fever. Human isolates of MARV are not lethal to immmunocompetent adult mice and, to date, there are no reports of a mouse-adapted MARV model. Previously, a uniformly lethal EBOV-Zaire mouse-adapted virus was developed by performing 9 sequential passages in progressively older mice (suckling to adult).
View Article and Find Full Text PDFWe previously identified structurally diverse small molecule (non-peptidic) inhibitors (SMNPIs) of the botulinum neurotoxin serotype A (BoNT/A) light chain (LC). Of these, several (including antimalarial drugs) contained a 4-amino-7-chloroquinoline (ACQ) substructure and a separate positive ionizable amine component. The same antimalarials have also been found to interfere with BoNT/A translocation into neurons, via pH elevation of the toxin-mediated endosome.
View Article and Find Full Text PDFUnderstanding how protective innate immune responses are generated is crucial to defeating highly lethal emerging pathogens. Accumulating evidence suggests that potent innate immune responses are tightly linked to control of Ebola and Marburg filoviral infections. Here, we report that unlike authentic or inactivated Ebola and Marburg, filovirus-derived virus-like particles directly activated human natural killer (NK) cells in vitro, evidenced by pro-inflammatory cytokine production and enhanced cytolysis of permissive target cells.
View Article and Find Full Text PDFAnthrax lethal toxin (LT)-induced cell death via mitogen-activated protein kinase kinase (MAPKK) cleavage remains questionable. Here, a chemical genetics approach was used to investigate what pathways mediate LT-induced cell death. Several small molecules were found to protect macrophages from anthrax LT cytotoxicity and MAPKK from cleavage by lethal factor (LF), without inhibiting LF enzymatic activity or cellular proteasome activity.
View Article and Find Full Text PDFThe live vaccine strain (LVS) of Francisella tularensis is the only vaccine against tularemia available for humans, yet its mechanism of protection remains unclear. We probed human immunological responses to LVS vaccination with transcriptome analysis using PBMC samples from volunteers at time points pre- and post-vaccination. Gene modulation was highly uniform across all time points, implying commonality of vaccine responses.
View Article and Find Full Text PDFBotulinum toxin is an exceedingly potent inhibitor of neurotransmission across the neuromuscular junction, causing flaccid paralysis and death. The potential for misuse of this deadly poison as a bioweapon has added a greater urgency to the search for effective therapeutics. The development of sensitive and efficient cell-based assays for the evaluation of toxin antagonists is crucial to the rapid and successful identification of therapeutic compounds.
View Article and Find Full Text PDFAn efficient research strategy integrating empirically guided, structure-based modeling and chemoinformatics was used to discover potent small molecule inhibitors of the botulinum neurotoxin serotype A light chain. First, a modeled binding mode for inhibitor 2-mercapto-3-phenylpropionyl-RATKML (K(i) = 330 nM) was generated, and required the use of a molecular dynamic conformer of the enzyme displaying the reorientation of surface loops bordering the substrate binding cleft. These flexible loops are conformationally variable in x-ray crystal structures, and the model predicted that they were pivotal for providing complementary binding surfaces and solvent shielding for the pseudo-peptide.
View Article and Find Full Text PDFAlveolar macrophages (AM) are very important for pulmonary innate immune responses against invading inhaled pathogens because they directly kill the organisms and initiate a cascade of innate and adaptive immune responses. Although several factors contribute to inhalational anthrax, we hypothesized that unimpeded infection of Bacillus anthracis is directly linked to disabling the innate immune functions contributed by AM. Here, we investigated the effects of lethal toxin (LT), one of the binary complex virulence factors produced by B.
View Article and Find Full Text PDFBecause of the high failure rate of antibiotic treatment in patients with anthrax there is a need for additional therapies such as passive immunization with therapeutic antibodies. In this study, we used codon-optimized plasmid DNAs (DNA vaccines) encoding Bacillus anthracis protective antigen (PA) to immunize rabbits for producing anti-anthrax antibodies for use in passive immunotherapy. The antisera generated with these DNA vaccines were of high titer as measured by ELISA.
View Article and Find Full Text PDFAntisense oligomers (ASOs) represent a promising technology to treat viral and bacterial infections, and have already been shown to be successful against a variety of pathogens in cell culture studies and nonhuman primate models of infection. For these reasons, antisense technologies are being pursued as treatments against biothreat agents such as Ebola virus, dengue virus and Bacillus anthracis. Several generations of modified oligonucleotides have been developed to maximize nuclease resistance, target affinity, potency, cell entry, and other pharmacokinetic properties.
View Article and Find Full Text PDF