Ozone concentrations in Houston, Texas, are among the highest in the United States, posing significant risks to human health. This study aimed to evaluate the impact of various emissions sources and meteorological factors on ozone formation in Houston from 2017 to 2021 using a comprehensive PMF-SHAP approach. First, we distinguished the unique sources of VOCs in each area and identified differences in the local chemistry that affect ozone production.
View Article and Find Full Text PDFFrom hourly ozone observations obtained from three regions⸻Houston, Dallas, and West Texas⸻we investigated the contributions of meteorology to changes in surface daily maximum 8-h average (MDA8) ozone from 2000 to 2019. We applied a deep convolutional neural network and Shapely additive explanation (SHAP) to examine the complex underlying nonlinearity between variations of surface ozone and meteorological factors. Results of the models showed that between 2000 and 2019, specific humidity (38% and 27%) and temperature (28% and 37%) contributed the most to ozone formation over the Houston and Dallas metropolitan areas, respectively.
View Article and Find Full Text PDFThe interpretation of large air pollution datasets involves a great deal of complexity. To gain a better understanding of the complicated relationships and patterns within datasets, we perform factor analysis. Between December 2015 and December 2017, fine particulate matter (PM) samples were collected at a suburban site northeast of the Houston metropolitan area, TX.
View Article and Find Full Text PDF