While zinc-ion and hybrid aqueous battery systems have emerged as potential substitutes for expensive lithium-ion batteries, issues like side reactions, limited electrochemical stability, and electrolyte leakage hinder their commercialization. Due to their low cost, high stability, minimal leakage risks, and a wide variety of modification opportunities, hydrogel electrolytes are considered the most promising solution compared to liquid or solid electrolytes. Here, we synthesized a dual-function hydrogel electrolyte based on polyacrylamide and poly(ethylene dioxythiophene):polystyrene (PPP).
View Article and Find Full Text PDFThis research introduces a new method to synthesize poly(vinyl) alcohol (PVA)-based deep eutectic solvent (DES)-supported anion-exchange membranes (AEMs) for alkaline fuel cell (AFC) applications. The fabrication method involved the modification of a PVA-based crosslinked nanofiber mat with DES prepared by mixing choline chloride (ChCl) and ethylene glycol (EG) in a 1:3 molar ratio. Various concentrations of glutaraldehyde (GA) solution were used to cross-link of the PVA fibers.
View Article and Find Full Text PDFThe chemical stability of tetramethylammonium (TMA) head groups, both with and without the presence of a choline chloride and ethylene glycol-based deep eutectic solvent (DES), was studied using Density Functional Theory (DFT) calculations and Molecular Dynamics (MD) simulations. DFT calculations of transition state energetics (ΔEreaction, ΔGreaction, ΔEactivation, and ΔGactivation) for key degradation mechanisms, ylide formation (YF) and nucleophilic substitution (SN2), suggested that the presence of DES enhances the stability of the TMA head groups compared to systems without DES. MD simulations across hydration levels (HLs) 1 to 5 indicated that without DES, YF dominates at lower HLs, while SN2 does not occur.
View Article and Find Full Text PDFThe chemical stability and ion transport properties of quaternized chitosan (QCS)-based anion exchange membranes (AEMs) were explored using Density Functional Theory (DFT) calculations and all-atom molecular dynamics (MD) simulations. DFT calculations of LUMO energies, reaction energies, and activation energies revealed an increasing stability trend among the head groups: propyl trimethyl ammonium chitosan (C) < oxy propyl trimethyl ammonium chitosan (B) < 2-hydroxy propyl trimethyl ammonium chitosan (A) at hydration levels (HLs) of 0 and 3. Subsequently, all-atom MD simulations evaluated the diffusion of hydroxide ions (OH-) through mean square displacement (MSD) versus time curves.
View Article and Find Full Text PDFBackground: Recent COVID crisis has demonstrated that modern society urgently needs an accessible protection against mass infections, especially viruses, as the new strains are appearing at an ever-increasing pace and cause severe harm to the population and the world economy.
Methods: We have developed an efficient phthalocyanine photosensitizer LASU, that is suitable for dyeing textiles and allows to prepare reusable self-disinfecting fabrics with strong antiviral properties. The safety profile of LASU was evaluated in accredited laboratories by several in vitro assays according to the OECD-guidelines.
Chitosan (CS)-based anion exchange membranes (AEMs) have gained significant attention in fuel cell applications owing to their numerous benefits, such as environmental friendliness, flexibility for structural alteration, and improved mechanical, thermal and chemical durability. This study aims to enhance the cell performance of CS-based AEMs by addressing key factors including mechanical stability, ionic conductivity, water absorption and expansion rate. While previous reviews have predominantly focused on CS as a proton-conducting membrane, the present mini-review highlights the advancements of CS-based AEMs.
View Article and Find Full Text PDFA two-phase anion-exchange membrane was prepared from quaternized chitosan (QCS) integrated with an electrospun polyacrylonitrile (PAN) scaffold by spin coating. To synthesize QCS, glycidyltrimethylammonium chloride in various amounts was introduced into the structure of CS. The characterization of the cast cross-linked QCS (CQCS) membranes by impedance spectroscopy revealed the ionic conductivity (IC) in the range of 2.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) is a method of treating precancerous diseases and malignant neoplasms. The efficacy of PDT depends on different parameters such as light dosimetry, oxygen availability, and photophysical and physical-chemical properties of the photosensitizer. In PDT, a photosensitizer is activated using light to promote oxygen photosensitization and cellular transport plays a key role in the reach of it to the desired tissue.
View Article and Find Full Text PDFCommercialization of anion exchange membrane fuel cells (AEMFCs) has been limited due to the chemical degradation of various quaternary ammonium (QA) head groups, which affects the transportation of hydroxide (OH−) ions in AEMs. Understanding how various QA head groups bind and interact with hydroxide ions at the molecular level is of fundamental importance to developing high-performance AEMs. In this work, the binding and degradation reaction of hydroxide ions with several QA head groups—(a) pyridinium, (b) 1,4-diazabicyclo [2.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) is an innovative treatment of malignant or diseased tissues. The effectiveness of PDT depends on light dosimetry, oxygen availability, and properties of the photosensitizer (PS). Depending on the medium, photophysical properties of the PS can change leading to increase or decrease in fluorescence emission and formation of reactive oxygen species (ROS) especially singlet oxygen (O).
View Article and Find Full Text PDF1-Phenalen-1-one is a very efficient and easy-to-synthesize photosensitizer. Many substitutions have been previously described, but most of them significantly reduce the singlet oxygen quantum yield. The chloromethyl derivative described elsewhere is a good starting point for the synthesis of many useful derivatives because of the methylene bridge that saves its unique photosensitizing properties.
View Article and Find Full Text PDFIn this work, we exploit the versatile function of cationic phosphonium-conjugated polythiophenes to develop multifunctional platforms for imaging and combined therapy (siRNA delivery and photodynamic therapy). The photophysical properties (absorption, emission and light-induced generation of singlet oxygen) of these cationic polythiophenes were found to be sensitive to molecular weight. Upon light irradiation, low molecular weight cationic polythiophenes were able to light-sensitize surrounding oxygen into reactive oxygen species (ROS) while the highest were not due to its aggregation in aqueous media.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) has drawn great interest in recent years mainly due to its low side effects and few drug resistances. Nevertheless, one of the issues of PDT is the need for oxygen to induce a photodynamic effect. Tumours often have low oxygen concentrations, related to the abnormal structure of the microvessels leading to an ineffective blood distribution.
View Article and Find Full Text PDFFurther improvements in Photodynamic therapy (PDT) necessitate that the dye targets more selectively tumour tissues or neovascularization than healthy cells. Different enzymes such as matrix metalloproteinases (MMPs) are overexpressed in tumour areas. Among these MMPs, gelatinases (MMP-2 and MMP-9) and its activator MMP-14 are known to play a key role in tumour angiogenesis and the growth of many cancers such as glioblastoma multiforme (GBM), an aggressive malignant tumour of the brain.
View Article and Find Full Text PDFCarotenoid pigments were extracted and purified from persimmon fruits using accelerated solvent extraction (ASE). Eleven pigments were isolated and five of them were clearly identified as all--violaxanthine, all--lutein, all--zeaxanthin all--cryptoxanthin and all--β-carotene. Absorption and fluorescence spectra were recorded.
View Article and Find Full Text PDFRecent researches in photodynamic therapy have focused on novel techniques to enhance tumour targeting of anticancer drugs and photosensitizers. Coupling a photosensitizer with folic acid could allow more effective targeting of folate receptors which are over-expressed on the surface of many tumour cells. In this study, different folic acid-OEG-conjugated photosensitizers were synthesized, characterized and their photophysical properties were evaluated.
View Article and Find Full Text PDFPhotodynamic therapy is an alternative to chemotherapy and radiotherapy for cancer treatment. PDT is clinically applied to treat age-related macular degeneration and several types of cancer. Most of the time, the selectivity of the treatment is brought about by the application of light.
View Article and Find Full Text PDF