Publications by authors named "Bauskin A"

Background: Elevated macrophage inhibitory cytokine-1 (MIC-1/GDF15) levels in serum mediate anorexia and weight loss in some cancer patients and similarly elevated levels occur in chronic kidney disease (CKD). Serum MIC-1/GDF15 is also elevated in chronic inflammatory diseases and predicts atherosclerotic events independently of traditional risk factors. The relationship between chronic inflammation, decreasing body mass index (BMI) and increased mortality in CKD is not well understood and is being actively investigated.

View Article and Find Full Text PDF

Macrophage inhibitory cytokine-1/growth differentiation factor 15 (MIC-1/GDF15), a divergent member of the TGF-beta superfamily is induced by a range of proinflammatory cytokines and oxidized low-density lipoprotein (oxLDL) and is highly expressed in macrophages in atherosclerotic and tumor lesions. MIC-1/GDF15, a major p53 target gene, is largely described to have anti-tumorigenic activity and more recently high MIC-1/GDF15 serum levels in late stage cancer were shown to be the major cause of cancer-associated weight loss. MIC-1/GDF15 serum levels independently predict both atherosclerotic events and severity of rheumatoid arthritis (RA), suggesting serum levels are important in modifying disease expression.

View Article and Find Full Text PDF

Background: Macrophage inhibitory cytokine-1 (MIC-1) belongs to the bone morphogenic protein/transforming growth factor-beta (BMP/TGF-beta) superfamily. Serum MIC-1 concentrations are elevated in patients with advanced prostate cancer. The effects of MIC-1 on prostate cancer bone metastases are unknown.

View Article and Find Full Text PDF

Anorexia and weight loss are part of the wasting syndrome of late-stage cancer, are a major cause of morbidity and mortality in cancer, and are thought to be cytokine mediated. Macrophage inhibitory cytokine-1 (MIC-1) is produced by many cancers. Examination of sera from individuals with advanced prostate cancer showed a direct relationship between MIC-1 abundance and cancer-associated weight loss.

View Article and Find Full Text PDF

Objective: The transforming growth factor beta superfamily member macrophage inhibitory cytokine 1 (MIC-1) is expressed upon macrophage activation, regulated by the p53 pathway, and linked to clinical events in atherosclerosis and cancer. Since rheumatoid arthritis (RA) shares similar etiopathologic mechanisms with the above diseases, we sought to determine the clinical utility of determining MIC-1 serum levels and MIC-1 genotype in the management of RA.

Methods: Ninety-one RA patients were recruited.

View Article and Find Full Text PDF

Macrophage inhibitory cytokine-1 (MIC-1), a transforming growth factor-beta superfamily cytokine, is involved in tumor pathogenesis, and its measurement can be used as a clinical tool for the diagnosis and management of a wide range of cancers. Although generally considered to be part of the cell's antitumorigenic repertoire, MIC-1 secretion, processing, and latent storage suggest a complex, dynamic variability in MIC-1 bioavailability in the tumor microenvironment, potentially modulating tumor progression and invasiveness.

View Article and Find Full Text PDF

Here we identified growth-differentiation factor 15 (GDF15) (also known as MIC-1), a secreted member of the transforming growth factor (TGF)-beta superfamily, as a novel antihypertrophic regulatory factor in the heart. GDF15 is not expressed in the normal adult heart but is induced in response to conditions that promote hypertrophy and dilated cardiomyopathy. To elucidate the function of GDF15 in the heart, we generated transgenic mice with cardiac-specific overexpression.

View Article and Find Full Text PDF

Purpose: Current serum testing for the detection of prostate cancer (PCa) lacks specificity. On diagnosis, the optimal therapeutic pathway is not clear and tools for adequate risk assessment of localized PCa progression are not available. This leads to a significant number of men having unnecessary diagnostic biopsies and surgery.

View Article and Find Full Text PDF

The extracellular matrix (ECM) is a reservoir of cellular binding proteins and growth factors that are critical for normal cell behavior, and aberrations in the ECM invariably accompany malignancies such as prostate cancer. Carcinomas commonly overexpress macrophage inhibitory cytokine 1 (MIC-1), a proapoptotic and antitumorigenic transforming growth factor-beta superfamily cytokine. Here we show that MIC-1 is often secreted in an unprocessed propeptide containing form.

View Article and Find Full Text PDF

Most proteins adopt a well defined three-dimensional structure; however, it is increasingly recognized that some proteins can exist with at least two stable conformations. Recently, a class of intracellular chloride ion channel proteins (CLICs) has been shown to exist in both soluble and integral membrane forms. The structure of the soluble form of CLIC1 is typical of a soluble glutathione S-transferase superfamily protein but contains a glutaredoxin-like active site.

View Article and Find Full Text PDF

Macrophage inhibitory cytokine 1 (MIC-1), a divergent member of the transforming growth factor-beta superfamily, is linked to the pathogenesis of cancer. To delineate possible roles for MIC-1 in prostate cancer, a number of prostate epithelial cell lines have been studied, including PZ-HPV-7, DU-145, PC-3, and LNCaP cells. Factors regulating the production of MIC-1 protein by these cells and some of the effects of MIC-1 on them were investigated.

View Article and Find Full Text PDF

The HERG K+ channel has very unusual kinetic behavior that includes slow activation but rapid inactivation. These features are critical for normal cardiac repolarization as well as in preventing lethal ventricular arrhythmias. Mutagenesis studies have shown that the extracellular peptide linker joining the fifth transmembrane domain to the pore helix is critical for rapid inactivation of the HERG K+ channel.

View Article and Find Full Text PDF

Introduction: As a molecular model of the effect of ischemia on drug block of the transient outward potassium current, the effect of acidosis on the blocking properties of flecainide and quinidine on Kv4.3 currents was studied.

Methods And Results: Kv4.

View Article and Find Full Text PDF

Purpose: Macrophage inhibitory cytokine-1 (MIC-1) is a divergent member of the tumor growth factor beta (TGF-beta) superfamily. Several observations suggest that it plays a role in colorectal carcinoma (CRC). In particular, MIC-1 is markedly up-regulated in colorectal cancers as well as in premalignant adenomas.

View Article and Find Full Text PDF

Genetic alterations in tumor cells often lead to the emergence of growth-stimulatory autocrine and paracrine signals, involving overexpression of secreted peptide growth factors, cytokines, and hormones. Increased levels of these soluble proteins may be exploited for cancer diagnosis and management or as points of therapeutic intervention. Here, we combined the use of controlled vocabulary terms and sequence-based algorithms to predict genes encoding secreted proteins from among approximately 12,500 sequences represented on oligonucleotide microarrays.

View Article and Find Full Text PDF

Macrophage inhibitory cytokine-1 (MIC-1) is a divergent member of the TGF-beta superfamily. There are at least two known alleles of MIC-1 that are due to a G-->C point substitution at position 6 of the mature protein, which alters a histidine to an aspartic acid (MIC-1 H and MIC-1 D). We have determined the phenotype of MIC-1 circulating in serum by exploiting the differences in the affinity of the two monoclonal antibodies to the H and D alleles of MIC-1.

View Article and Find Full Text PDF

Background: Macrophage inhibitory cytokine-1 (MIC-1) is part of the TGF-beta superfamily. Raised concentrations of MIC-1 in serum arise in several disease states, can be detected in normal individuals, and can partly be genetically determined. We aimed to investigate whether MIC-1 has a role in atherothrombosis.

View Article and Find Full Text PDF

CLIC1 (NCC27) is an unusual, largely intracellular, ion channel that exists in both soluble and membrane-associated forms. The soluble recombinant protein can be expressed in Escherichia coli, a property that has made possible both detailed electrophysiological studies in lipid bilayers and an examination of the mechanism of membrane integration. Soluble E.

View Article and Find Full Text PDF

We investigated the effects of three components of ischemia: external acidosis (pH=6.0), extracellular hyperkalemia ([K(+)]=20 mmol/l), and resting membrane depolarization to -60 mV, on Kv4.3 current stably expressed in Chinese Hamster Ovary cells.

View Article and Find Full Text PDF

beta-TrCP/E3RS (E3RS) is the F-box protein that functions as the receptor subunit of the SCF(beta-TrCP) ubiquitin ligase (E3). Surprisingly, although its two recognized substrates, IkappaB(alpha) and beta-catenin, are present in the cytoplasm, we have found that E3RS is located predominantly in the nucleus. Here we report the isolation of the major E3RS-associated protein, hnRNP-U, an abundant nuclear phosphoprotein.

View Article and Find Full Text PDF

CLIC1 (NCC27) is a member of the highly conserved class of chloride ion channels that exists in both soluble and integral membrane forms. Purified CLIC1 can integrate into synthetic lipid bilayers forming a chloride channel with similar properties to those observed in vivo. The structure of the soluble form of CLIC1 has been determined at 1.

View Article and Find Full Text PDF

Macrophage inhibitory cytokine-1 (MIC-1) is a divergent member of the transforming growth factor-beta (TGF-beta) superfamily. While it is synthesized in a pre-pro form, it is unique among superfamily members because it does not require its propeptide for correct folding or secretion of the mature peptide. To investigate factors that enable these propeptide independent events to occur, we constructed MIC-1/TGF-beta1 chimeras, both with and without a propeptide.

View Article and Find Full Text PDF

Macrophage inhibitory cytokine-1 (MIC-1) is a divergent member of the transforming growth factor-beta (TGF-beta) superfamily whose increased expression is associated with macrophage activation and which is expressed highly in placenta as compared to other tissues. There are two known allelic forms of human MIC-1 due an amino acid substitution at position 6 of the mature protein. We have raised four monoclonal antibodies (MAbs) and one polyclonal antiserum to the mature protein region of human MIC-1 and have used an extensive panel of MIC-1 relatives, mutants, and chimeras to map their epitopes.

View Article and Find Full Text PDF

Macrophage inhibitory cytokine-1 (MIC-1) is a recently described divergent member of the transforming growth factor-ss superfamily. MIC-1 transcription up-regulation is associated with macrophage activation, and this observation led to its cloning. Northern blots indicate that MIC-1 is also present in human placenta.

View Article and Find Full Text PDF

The methylotrophic yeast, Pichia pastoris, has been used to express both human and murine macrophage inhibitory cytokine-1 (MIC-1), a transforming growth factor beta (TGF-beta) superfamily cytokine. This is the first report of the expression of a correctly folded TGF-beta superfamily protein in a microbial organism. The protein is secreted in its correctly folded dimeric form at milligram per litre quantities, which are significantly higher than we have been able to achieve using mammalian expression systems.

View Article and Find Full Text PDF