Many proteins are synthesized as precursors, with propeptides playing a variety of roles such as assisting in folding or preventing them from being active within the cell. While the precise role of the propeptide in fungal lipases is not completely understood, it was previously reported that mutations in the propeptide region of the lipase have an influence on the activity of the mature enzyme, stressing the importance of the amino acid composition of this region. We here report two structures of this enzyme in complex with its propeptide, which suggests that the latter plays a role in the correct maturation of the enzyme.
View Article and Find Full Text PDFTwo glucanotransferases, disproportionating enzyme 1 (StDPE1) and disproportionating enzyme 2 (StDPE2), were repressed using RNA interference technology in potato, leading to plants repressed in either isoform individually, or both simultaneously. This is the first detailed report of their combined repression. Plants lacking StDPE1 accumulated slightly more starch in their leaves than control plants and high levels of maltotriose, while those lacking StDPE2 contained maltose and large amounts of starch.
View Article and Find Full Text PDFStarch phosphorylation catalysed by the alpha-glucan, water dikinases (GWD) has profound effects on starch degradation in plants. The Arabidopsis thaliana genome encodes three isoforms of GWD, two of which are localized in the chloroplast and are involved in the degradation of transient starch. The third isoform, termed AtGWD2 (At4g24450), was heterologously expressed and purified and shown to have a substrate preference similar to potato GWD.
View Article and Find Full Text PDFAn Arabidopsis thaliana gene encoding a homologue of the potato alpha-glucan, water dikinase GWD, previously known as R1, was identified by screening the Arabidopsis genome and named AtGWD3. The AtGWD3 cDNA was isolated, heterologously expressed and the protein was purified to apparent homogeneity to determine the enzymatic function. In contrast to the potato GWD protein, the AtGWD3 primarily catalysed phosphorylation at the C-3 position of the glucose unit of preferably pre-phosphorylated amylopectin substrate with long side chains.
View Article and Find Full Text PDFGWD (alpha-glucan,water dikinase) is the enzyme that catalyses the phosphorylation of starch by a dikinase-type reaction in which the beta-phosphate of ATP is transferred to either the C-6 or the C-3 position of the glycosyl residue of amylopectin. GWD shows similarity in both sequence and reaction mechanism to bacterial PPS (pyruvate,water dikinase) and PPDK (pyruvate,phosphate dikinase). Amino acid sequence alignments identified a conserved histidine residue located in the putative phosphohistidine domain of potato GWD.
View Article and Find Full Text PDFStarch is the primary energy reserve in higher plants and is, after cellulose, the second most abundant carbohydrate in the biosphere. It is also the most important energy source in the human diet and, being a biodegradable polymer with well-defined chemical properties, has an enormous potential as a versatile renewable resource. The only naturally occurring covalent modification of starch is phosphorylation.
View Article and Find Full Text PDFThe formation of intermediary glucans, mature starch, and phytoglycogen was studied using leaves of Arabidopsis thaliana wild type and dbe mutant, which lacks plastidic isoamylase (Zeeman, S. C., Umemoto, T.
View Article and Find Full Text PDFThe plasma membrane H+-ATPase is a proton pump belonging to the P-type ATPase superfamily and is important for nutrient acquisition in plants. The H+-ATPase is controlled by an autoinhibitory C-terminal regulatory domain and is activated by 14-3-3 proteins which bind to this part of the enzyme. Alanine-scanning mutagenesis through 87 consecutive amino acid residues was used to evaluate the role of the C-terminus in autoinhibition of the plasma membrane H+-ATPase AHA2 from Arabidopsis thaliana.
View Article and Find Full Text PDFThe plasma membrane H(+)-ATPase in higher plants has been implicated in nutrient uptake, phloem loading, elongation growth and establishment of turgor. Although a C-terminal regulatory domain has been identified, little is known about the physiological factors involved in controlling the activity of the enzyme. To identify components which play a role in the regulation of the plant H(+)-ATPase, a fusicoccin responsive yeast expressing Arabidopsis plasma membrane H(+)-ATPase AHA2 was employed.
View Article and Find Full Text PDFTransport across the plasma membrane is driven by an electrochemical gradient of H+ ions generated by the plasma membrane proton pump (H(+)-ATPase). Random mutants of Arabidopsis H(+)-ATPase AHA1 were isolated by phenotypic selection of growth of transformed yeast cells in the absence of endogenous yeast H(+)-ATPase (PMA1). A Trp-874-Leu substitution as well as a Trp-874 to Lys-935 deletion in the hydrophilic C-terminal domain of AHA1 conferred growth of yeast cells devoid of PMA1.
View Article and Find Full Text PDFSequence analysis and cDNA cloning of Coprinus peroxidase (CIP) were undertaken to expand the understanding of the relationships of structure, function and molecular genetics of the secretory heme peroxidases from fungi and plants. Amino acid sequencing of Coprinus macrorhizus peroxidase, and cDNA sequencing of Coprinus cinereus peroxidase showed that the mature proteins are identical in amino acid sequence, 343 residues in size and preceded by a 20-residue signal peptide. Their likely identity to peroxidase from Arthromyces ramosus is discussed.
View Article and Find Full Text PDF