Publications by authors named "Baumberger T"

Seabird colonies have a strong influence on both the physical and chemical soil parameters and plant communities of the islands where they settle to nest. Scientists have studied the effects of the demographic explosion of seabird populations, but few have explored the long-term effects when the colonies were in decline. The aim of this study was to investigate diachronic changes over a 24 year period of soil parameters, floristic composition and plant functionnal types (Raunkiaer growth forms and Grime life strategies) up to the decrease of the number of nesting yellow-legged gulls (Larus michahellis Naumann, 1840) on Mediterranean islands.

View Article and Find Full Text PDF

The assembly of biopolymers into a hydrated elastic network often goes along with , a spontaneous process during which the hydrogel slowly shrinks and releases solvent. The tendency to syneresis of calcium-alginate hydrogels, widely used biocompatible materials, is a hindrance to applications for which dimensional integrity is crucial. Although calcium-induced aggregation of specific block-sequences has been long known as the microscopic process at work in both primary cross-linking and syneresis, the nature of the coupling between these structural events and the global deswelling flow has remained so far elusive.

View Article and Find Full Text PDF

Oxygen constitutes one of the strongest factors explaining microbial taxonomic variability in deep-sea sediments. However, deep-sea microbiome studies often lack the spatial resolution to study the oxygen gradient and transition zone beyond the oxic-anoxic dichotomy, thus leaving important questions regarding the microbial response to changing conditions unanswered. Here, we use machine learning and differential abundance analysis on 184 samples from 11 sediment cores retrieved along the Arctic Mid-Ocean Ridge to study how changing oxygen concentrations (1) are predicted by the relative abundance of higher taxa and (2) influence the distribution of individual Operational Taxonomic Units.

View Article and Find Full Text PDF

Associating collagen with biodegradable hydrophobic polyesters constitutes a promising method for the design of medicated biomaterials. Current collagen-polyester composite hydrogels consisting of pre-formed polymeric particles encapsulated within a low concentrated collagen hydrogel suffer from poor physical properties and low drug loading. Herein, an amphiphilic composite platform associating dense collagen hydrogels and up to 50 wt% polyesters with different hydrophobicity and chain length is developed.

View Article and Find Full Text PDF

The elaboration of scaffolds able to efficiently promote cell differentiation toward a given cell type remains challenging. Here, we engineered dense type I collagen threads with the aim of providing scaffolds with specific morphological and mechanical properties for C3H10T1/2 mesenchymal stem cells. Extrusion of pure collagen solutions at different concentrations (15, 30, and 60 mg/mL) in a PBS 5× buffer generated dense fibrillated collagen threads.

View Article and Find Full Text PDF

We study the interplay between a crack tip slowly propagating through a hydrogel and nanoparticles suspended in its liquid environment. Using a proteinic gel enables us to tune the electrostatic interaction between the network and silica colloids. Thereby, we unveil two distinct, local toughening mechanisms.

View Article and Find Full Text PDF

Hydrothermal systems are excellent natural laboratories for the study of how chemical energy landscapes shape microbial communities. Yet, only a few attempts have been made to quantify relationships between energy availability and microbial community structure in these systems. Here, we have investigated how microbial communities and chemical energy availabilities vary along cross-sections of two hydrothermal chimneys from the Soria Moria Vent Field and the Bruse Vent Field.

View Article and Find Full Text PDF

Glycerol is one of the additives which stabilize collagen, as well as globular proteins, against thermally induced denaturation --an effect explained by preferential hydration, i.e. by the formation, in water/glycerol solvents, of a hydration layer whose entropic cost favors the more compact triple-helix native structure against the denatured one, gelatin.

View Article and Find Full Text PDF

Silicates-in-silica nanocomposite hydrogels obtained from sodium silicates/colloidal silica mixtures have previously been found to be useful for bacterial encapsulation. However the extension of synthesis conditions and the understanding of their impact on the silica matrix would widen the applicability of this process in terms of encapsulated organisms and the host properties. Here the influence of silicates and the colloidal silica concentration as well as pH conditions on the gel time, the optical properties, the structural and mechanical properties of silica matrices was studied.

View Article and Find Full Text PDF

We study the stress response to a step strain of covalently bonded gelatin gels in the temperature range where triple helix reversible crosslink formation is prohibited. We observe slow stress relaxation towards a T-dependent finite asymptotic level. We show that this is assignable to the strain-induced coil → helix transition, previously evidenced by Courty et al.

View Article and Find Full Text PDF

The bacterial strain, IR-2T, was isolated from a microbial mat sampled near a hydrothermal vent in the Greenland Sea. Phylogenetic analysis, based on the 16S rRNA gene, showed that the closest relatives of IR-2T were Ilyobacter tartaricus, Ilyobacter insuetus, Propionigenium modestum and Fusobacterium varium (91 % 16S rRNA gene sequence similarity). The cells of the novel strain were Gram-stain-negative and pleomorphic; changing from long motile rods to non-motile ring structures during the growth cycle.

View Article and Find Full Text PDF

We probe the mechanisms at work in the build-up of thermoreversible gel networks, with the help of hybrid gelatin gels containing a controlled density of irreversible, covalent crosslinks (CLs), which we quench below the physical gelation temperature. The detailed analysis of the dependence on covalent crosslink density of both the shear modulus and optical activity evolutions with time after quench enables us to identify two stages of the physical gelation process, separated by a temperature-dependent crossover modulus: (i) an early nucleation regime during which rearrangements of the triple-helix CLs play a negligible role, and (ii) a late, logarithmic aging one, which is preserved, though slowed down, in the presence of irreversible CLs. We show that aging is fully controlled by rearrangements and discuss the implication of our results in terms of the switch from an early, local dynamics to a late, cooperative long-range one.

View Article and Find Full Text PDF

Constructed wetlands (CWs) offer an alternative to traditional industrial wastewater treatment systems that has been proved to be efficient, cost-effective and environmentally friendly. Most of the time, CWs are planted with proliferative species such as Phragmites australis or with plants originating from nurseries, both representing a risk for the natural biodiversity conservation of aquatic ecosystems located downstream of the CWs. For the removal of metals and organic pollutant mixtures present in industrial effluents, it is necessary to select tolerant plant species that are able to produce a high aboveground biomass and to develop a healthy belowground system.

View Article and Find Full Text PDF

In marine sediments archaea often constitute a considerable part of the microbial community, of which the Deep Sea Archaeal Group (DSAG) is one of the most predominant. Despite their high abundance no members from this archaeal group have so far been characterized and thus their metabolism is unknown. Here we show that the relative abundance of DSAG marker genes can be correlated with geochemical parameters, allowing prediction of both the potential electron donors and acceptors of these organisms.

View Article and Find Full Text PDF

Tendon formation and repair rely on specific combinations of transcription factors, growth factors, and mechanical parameters that regulate the production and spatial organization of type I collagen. Here, we investigated the function of the zinc finger transcription factor EGR1 in tendon formation, healing, and repair using rodent animal models and mesenchymal stem cells (MSCs). Adult tendons of Egr1-/- mice displayed a deficiency in the expression of tendon genes, including Scx, Col1a1, and Col1a2, and were mechanically weaker compared with their WT littermates.

View Article and Find Full Text PDF

Microbial communities and their associated metabolic activity in marine sediments have a profound impact on global biogeochemical cycles. Their composition and structure are attributed to geochemical and physical factors, but finding direct correlations has remained a challenge. Here we show a significant statistical relationship between variation in geochemical composition and prokaryotic community structure within deep-sea sediments.

View Article and Find Full Text PDF

We study gelation under shear of aqueous gelatin by measuring the evolution of the apparent viscosity, thus extending the previous study by de Carvalho and Djabourov (W. de Carvalho, M. Djabourov, Rheol.

View Article and Find Full Text PDF

The Arctic Mid-Ocean Ridge (AMOR) represents one of the most slow-spreading ridge systems on Earth. Previous attempts to locate hydrothermal vent fields and unravel the nature of venting, as well as the provenance of vent fauna at this northern and insular termination of the global ridge system, have been unsuccessful. Here, we report the first discovery of a black smoker vent field at the AMOR.

View Article and Find Full Text PDF

We study the effect of nonbinding Na(+) ions on the kinetics of rupture of alginate gels cross-linked by Ca(2+). Wetting a crack tip with a saline solution at physiological concentrations is found to be able to induce a quasi-instantaneous, 10-fold velocity jump. This effect is analyzed with a phenomenological model for the rate-dependent fracture energy in physical gels, extended here to account for the role of ions on the rate of cross-link "unzipping".

View Article and Find Full Text PDF

Experiments on quasistatic crack propagation in gelatin hydrogels reveal a new branching instability triggered by wetting the tip opening with a drop of aqueous solvent less viscous than the bulk one. We show that the emergence of unstable branches results from a balance between the rate of secondary crack growth and the rate of advection away from a non-linear elastic region of size G/E , where G is the fracture energy and E the small strain Young modulus. We build a minimal, predictive model that combines mechanical characteristics of this mesoscopic region and physical features of the process zone.

View Article and Find Full Text PDF

We show that the aging of the mechanical relaxation of a gelatin gel exhibits the same scaling phenomenology as polymer and colloidal glasses. In addition, gelatin is known to exhibit logarithmic structural aging (stiffening). We find that stress accelerates this process.

View Article and Find Full Text PDF

We report on rate-dependent fracture energy measurements over three decades of steady crack velocities in alginate and gelatin hydrogels. We evidence that irrespective of gel thermoreversibility, thermally activated "unzipping" of the noncovalent cross-link zones results in slow crack propagation, prevailing against the toughening effect of viscous solvent drag during chain pull-out, which becomes efficient above a few mm s(-1). We extend a previous model [T.

View Article and Find Full Text PDF

The full 2D analysis of roughness profiles of fracture surfaces resulting from quasistatic crack propagation in gelatin gels reveals an original behavior characterized by (i) strong anisotropy with maximum roughness at V-independent symmetry-preserving angles and (ii) a subcritical instability leading, below a critical velocity, to a cross-hatched regime due to straight macrosteps drifting at the same magic angles and nucleated on crack-pinning network inhomogeneities. Step height values are determined by the width of the strain-hardened zone, governed by the elastic crack blunting characteristic of soft solids with breaking stresses much larger than low strain moduli.

View Article and Find Full Text PDF

We present single contact friction experiments between a glassy polymer and smooth silica substrates grafted with alkylsilane layers of different coverage densities and morphologies. This allows us to adjust the polymer-substrate interaction strength. We find that, when going from weak to strong interaction, the response of the interfacial junction where shear localizes evolves from that of a highly viscous threshold fluid to that of a plastically deformed glassy solid.

View Article and Find Full Text PDF

We present an extensive experimental study of mode-I, steady, slow crack dynamics in gelatin gels. Taking advantage of the sensitivity of the elastic stiffness to gel composition and history we confirm and extend the model for fracture of physical hydrogels which we proposed in a previous paper (Nature Mater. 5, 552 (2006)), which attributes decohesion to the viscoplastic pull-out of the network-constituting chains.

View Article and Find Full Text PDF