Publications by authors named "Baumberg J"

Metal nanocrystals synthesized in achiral environments usually exhibit no chiroptical effects. However, by placing nominally achiral nanocrystals 1.3 nm above gold films, we find giant chiroptical effects, reaching anisotropy factors as high as ≈ 0.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy (SERS) has evolved significantly over fifty years into a powerful analytical technique. This review aims to achieve five main goals. (1) Providing a comprehensive history of SERS's discovery, its experimental and theoretical foundations, its connections to advances in nanoscience and plasmonics, and highlighting collective contributions of key pioneers.

View Article and Find Full Text PDF

Tightly confined plasmons in metal nanogaps are highly sensitive to surface inhomogeneities and defects due to the nanoscale optical confinement, but tracking and monitoring their location is hard. Here, we probe a 1-D extended nanocavity using a plasmonic silver nanowire (AgNW) on mirror geometry. Morphological changes inside the nanocavity are induced locally using optical excitation and probed locally through simultaneous measurements of surface enhanced Raman scattering (SERS) and dark-field spectroscopy.

View Article and Find Full Text PDF

Trilayer electrochemical actuators comprising an electrolyte layer sandwiched between two electrode layers have been shown to exhibit large deformations at low actuation voltages. Here we report the aerosol-jet printing (AJP) of high-aspect-ratio bending-type trilayer electrochemical microactuators comprised of Nafion as the electrolyte and poly(3,4-ethylenedioxythiophene)polystyrene sulfonate (PEDOT:PSS) as the electrode. We investigated how the thicknesses of the electrolyte and electrode layers affect the DC response of these actuators by fabricating high-aspect-ratio trilayer cantilevers with varied layer thicknesses (0.

View Article and Find Full Text PDF

Plasmonic nanostructures can both drive and interrogate light-driven catalytic reactions. Sensitive detection of reaction pathways is achieved by confining optical fields near the active surface. However, effective control of the reaction kinetics remains a challenge to utilize nanostructure constructs as efficient chemical reactors.

View Article and Find Full Text PDF

Catalysis stands as an indispensable cornerstone of modern society, underpinning the production of over 80% of manufactured goods and driving over 90% of industrial chemical processes. As the demand for more efficient and sustainable processes grows, better catalysts are needed. Understanding the working principles of catalysts is key, and over the last 50 years, surface-enhanced Raman Spectroscopy (SERS) has become essential.

View Article and Find Full Text PDF

The application of nanosized active particles in Li-ion batteries has been the subject of intense investigation, yielding mixed results in terms of overall benefits. While nanoparticles have shown promise in improving rate performance and reducing issues related to cracking, they have also faced criticism due to side reactions, low packing density, and consequent subpar volumetric battery performance. Interesting processes such as self-assembly have been proposed to increase packing density, but these tend to be incompatible with scalable processes such as roll-to-roll coating, which are essential to manufacture electrodes at scale.

View Article and Find Full Text PDF

We introduce a flexible microscale all-fiber-optic Raman probe which can be embedded into devices to enable operando in situ spectroscopy. The facile-constructed probe is composed of a nested antiresonant nodeless hollow-core fiber combined with an integrated high refractive index barium titanate microlens. Pump laser 785 nm excitation and near-infrared collection are independently characterized, demonstrating an excitation spot of full-width-half-maximum 1.

View Article and Find Full Text PDF

Strong coupling between a single quantum emitter and an optical cavity (at rate Ω) accesses fundamental quantum optics and provides an essential building block for photonic quantum technologies. However, the minimum mode volume of conventional dielectric cavities restricts their operation to cryogenic temperature for strong coupling. Here we harness surface self-assembly to make deterministic strong coupling at room temperature using CdSe/CdS quantum dots (QDs) in nanoparticle-on-mirror (NPoM) plasmonic nanocavities.

View Article and Find Full Text PDF

Accessing the terahertz (THz) spectral domain through surface-enhanced Raman spectroscopy (SERS) is challenging and opens up the study of low-frequency molecular and electronic excitations. Compared to direct THz probing of heterogenous ensembles, the extreme plasmonic confinement of visible light to deep sub-wavelength scales allows the study of hundreds or even single molecules. We show that self-assembled molecular monolayers of a set of simple aromatic thiols confined inside single-particle plasmonic nanocavities can be distinguished by their low-wavenumber spectral peaks below 200 cm, after removal of a bosonic inelastic contribution and an exponential background from the spectrum.

View Article and Find Full Text PDF

Stretching elastic materials containing nanoparticle lattices is common in research and industrial settings, yet our knowledge of the deformation process remains limited. Understanding how such lattices reconfigure is critically important, as changes in microstructure lead to significant alterations in their performance. This understanding has been extremely difficult to achieve due to a lack of fundamental rules governing the rearrangements.

View Article and Find Full Text PDF

Lasers are ubiquitous for information storage, processing, communications, sensing, biological research and medical applications. To decrease their energy and materials usage, a key quest is to miniaturise lasers down to nanocavities. Obtaining the smallest mode volumes demands plasmonic nanocavities, but for these, gain comes from only a single or few emitters.

View Article and Find Full Text PDF

Optical nanocavities have revolutionized the manipulation of radiative properties of molecular and semiconductor emitters. Here, we investigate the amplified photoluminescence arising from exciting a dark transition of β-carotene molecules embedded within plasmonic nanocavities. Integrating a molecular monolayer into nanoparticle-on-mirror nanostructures unveils enhancements surpassing 4 orders of magnitude in the initially light-forbidden excitation.

View Article and Find Full Text PDF

Functionalization of metallic surfaces by molecular monolayers is a key process in fields such as nanophotonics or biotechnology. To strongly enhance light-matter interaction in such monolayers, nanoparticle-on-a-mirror (NPoM) cavities can be formed by placing metal nanoparticles on such chemically functionalized metallic monolayers. In this work, we present a novel functionalization process of gold surfaces using 5-amino-2-mercaptobenzimidazole (5-A-2MBI) molecules, which can be used for upconversion from THz to visible frequencies.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy (SERS) harnesses the confinement of light into metallic nanoscale hotspots to achieve highly sensitive label-free molecular detection that can be applied for a broad range of sensing applications. However, challenges related to irreversible analyte binding, substrate reproducibility, fouling, and degradation hinder its widespread adoption. Here we show how in-situ electrochemical regeneration can rapidly and precisely reform the nanogap hotspots to enable the continuous reuse of gold nanoparticle monolayers for SERS.

View Article and Find Full Text PDF

The molecule-metal interface is of paramount importance for many devices and processes, and directly involved in photocatalysis, molecular electronics, nanophotonics, and molecular (bio-)sensing. Here the photostability of this interface is shown to be sensitive even to room light levels for specific molecules and metals. Optical spectroscopy is used to track photoinduced migration of gold atoms when functionalised with different thiolated molecules that form uniform monolayers on Au.

View Article and Find Full Text PDF

Submillimeter or micrometer scale electrically controlled soft actuators have immense potential in microrobotics, haptics, and biomedical applications. However, the fabrication of miniaturized and micropatterned open-air soft actuators has remained challenging. In this study, we demonstrate the microfabrication of trilayer electrochemical actuators (ECAs) through aerosol jet printing (AJP), a rapid prototyping method with a 10 μm lateral resolution.

View Article and Find Full Text PDF

Integrating cavity-enhanced colloidal quantum dots (QDs) into photonic chip devices would be transformative for advancing room-temperature optoelectronic and quantum photonic technologies. However, issues with efficiency, stability, and cost remain formidable challenges to reach the single antenna limit. Here, we present a bottom-up approach that delivers single QD-plasmonic nanoantennas with electrical addressability.

View Article and Find Full Text PDF

The strong-coupling interaction between quantum emitters and cavities provides the archetypical platform for fundamental quantum electrodynamics. Here we show that methylene blue (MB) molecules interact coherently with subwavelength plasmonic nanocavity modes at room temperature. Experimental results show that the strong coupling can be switched on and off reversibly when MB molecules undergo redox reactions which transform them to leuco-methylene blue molecules.

View Article and Find Full Text PDF

Conjugated polymers are promising material candidates for many future applications in flexible displays, organic circuits, and sensors. Their performance is strongly affected by their structural conformation including both electrical and optical anisotropy. Particularly for thin layers or close to crucial interfaces, there are few methods to track their organization and functional behaviors.

View Article and Find Full Text PDF

We show using time-dependent density functional theory (TDDFT) that light can be confined into slot waveguide modes residing between individual atomic layers of coinage metals, such as gold. As the top atomic monolayer lifts a few Å off the underlying bulk Au (111), ab initio electronic structure calculations show that for gaps >1.5 Å, visible light squeezes inside the empty slot underneath, giving optical field distributions 2 Å thick, less than the atomic diameter.

View Article and Find Full Text PDF

We introduce a spectral analysis method in picosecond ultrasonics to derive strain pulse shapes in a opaque sample with known optical properties. The method makes use of both the amplitude and phase of optical transient relative reflectance changes obtained, for example, by interferometry. We demonstrate this method through numerical simulation and by analysis of experimental results for a chromium film.

View Article and Find Full Text PDF

Light-responsive microactuators composed of vertically aligned carbon nanotube (CNT) forests mixed with poly(N-isopropylacrylamide) (PNIPAM) hydrogel composites are studied. The benefit of this composite is that CNTs act as a black absorber to efficiently capture radiative heating and trigger PNIPAM contraction. In addition, CNT forests can be patterned accurately using lithography to span structures ranging from a few micrometers to several millimeters in size, and these CNT-PNIPAM composites can achieve response times as fast as 15 ms.

View Article and Find Full Text PDF