A spinal cord injury (SCI) disrupts the neuronal projections from the brain to the region of the spinal cord that produces walking, leading to various degrees of paralysis. Here, we aimed to identify brain regions that steer the recovery of walking after incomplete SCI and that could be targeted to augment this recovery. To uncover these regions, we constructed a space-time brain-wide atlas of transcriptionally active and spinal cord-projecting neurons underlying the recovery of walking after incomplete SCI.
View Article and Find Full Text PDFBackground: Cerebral Palsy (CP) is a major cause of motor and cognitive disability in children due to injury to the developing brain. Early intensive sensorimotor rehabilitation has been shown to change brain structure and reduce CP symptoms severity. We combined environmental enrichment (EE) and treadmill training (TT) to observe the effects of a one-week program of sensorimotor stimulation (EETT) in animals exposed to a CP model and explored possible mechanisms involved in the functional recovery.
View Article and Find Full Text PDFA spinal cord injury interrupts pathways from the brain and brainstem that project to the lumbar spinal cord, leading to paralysis. Here we show that spatiotemporal epidural electrical stimulation (EES) of the lumbar spinal cord applied during neurorehabilitation (EES) restored walking in nine individuals with chronic spinal cord injury. This recovery involved a reduction in neuronal activity in the lumbar spinal cord of humans during walking.
View Article and Find Full Text PDFA spinal cord injury usually spares some components of the locomotor circuitry. Deep brain stimulation (DBS) of the midbrain locomotor region and epidural electrical stimulation of the lumbar spinal cord (EES) are being used to tap into this spared circuitry to enable locomotion in humans with spinal cord injury. While appealing, the potential synergy between DBS and EES remains unknown.
View Article and Find Full Text PDFCalpains, intracellular proteases specifically inhibited by calpastatin, play a major role in neoangiogenesis involved in tumor invasiveness and metastasis. They are partly exteriorized via the ATP-binding cassette transporter A1(ABCA1) transporter, but the importance of this process in tumor growth is still unknown. The aim of our study was to investigate the role of extracellular calpains in a model of melanoma by blocking their extracellular activity or exteriorization.
View Article and Find Full Text PDFIncreased urinary oxalate excretion (hyperoxaluria) promotes the formation of calcium oxalate crystals. Monogenic diseases due to hepatic enzymes deficiency result in chronic hyperoxaluria, promoting end-stage renal disease in children and young adults. Ethylene glycol poisoning also results in hyperoxaluria promoting acute renal failure and frequently death.
View Article and Find Full Text PDFCalpain 1 is a proinflammatory calcium-activated cysteine protease, which can be partly externalized. Extracellular calpains limit inflammatory processes and promote tissue repair, through cell proliferation and migration. Toll like receptor (TLR) 2 has been identified as a target of extracellular calpains in lymphocytes.
View Article and Find Full Text PDFSevere spinal cord contusions interrupt nearly all brain projections to lumbar circuits producing leg movement. Failure of these projections to reorganize leads to permanent paralysis. Here we modeled these injuries in rodents.
View Article and Find Full Text PDFCalpains are ubiquitous pro-inflammatory proteases, whose activity is controlled by calpastatin, their specific inhibitor. Transgenic mice over-expressing rabbit calpastatin (CalpTG) are protected against vascular remodelling and angiotensin II-dependent inflammation. We hypothesized that specific calpain inhibition would protect against aging-related lesions in arteries and kidneys.
View Article and Find Full Text PDFRobotic exoskeletons provide programmable, consistent and controllable active therapeutic assistance to patients with neurological disorders. Here we introduce a prototype and preliminary experimental evaluation of a rehabilitative gait exoskeleton that enables compliant yet effective manipulation of the fragile limbs of rats. To assist the displacements of the lower limbs without impeding natural gait movements, we designed and fabricated soft pneumatic actuators (SPAs).
View Article and Find Full Text PDFMedium-sized rings are widely considered to be under-represented in biological screening libraries for lead identification in medicinal chemistry. To help address this, a library of medium-sized lactams has been generated by using a simple, scalable and versatile ring-expansion protocol. Analysis of the library by using open-access computational tool LLAMA suggested that these lactams and their derivatives have highly promising physicochemical and 3D spatial properties and thus have much potential in drug discovery.
View Article and Find Full Text PDFVitamin D supplementation in humans should be accompanied by calcium administration to avoid bone demineralization through vitamin D receptor signaling. Here we analyzed whether long-term exposure of rats to vitamin D supplementation, with or without a calcium-rich diet, would promote kidney stone formation. Four groups of rats received vitamin D alone (100,000 UI/kg/3 weeks), a calcium-enriched diet alone, both vitamin D supplementation and calcium-enriched diet, or a standard diet (controls) for 6 months.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
September 2016
Excessive growth of pulmonary arterial (PA) smooth muscle cells (SMCs) is a major component of PA hypertension (PAH). The calcium-activated neutral cysteine proteases calpains 1 and 2, expressed by PASMCs, contribute to PH but are tightly controlled by a single specific inhibitor, calpastatin. Our objective was to investigate calpastatin during pulmonary hypertension (PH) progression and its potential role as an intracellular and/or extracellular effector.
View Article and Find Full Text PDFObjective: Angiotensin II (AngII) infusion profoundly increases activity of calpains, calcium-dependent neutral cysteine proteases, in mice. Pharmacological inhibition of calpains attenuates AngII-induced aortic medial macrophage accumulation, atherosclerosis, and abdominal aortic aneurysm in mice. However, the precise functional contribution of leukocyte-derived calpains in AngII-induced vascular pathologies has not been determined.
View Article and Find Full Text PDFObjectives: We aimed to develop a robotic interface capable of providing finely-tuned, multidirectional trunk assistance adjusted in real-time during unconstrained locomotion in rats and mice.
Approach: We interfaced a large-scale robotic structure actuated in four degrees of freedom to exchangeable attachment modules exhibiting selective compliance along distinct directions. This combination allowed high-precision force and torque control in multiple directions over a large workspace.
Electrical neuromodulation of lumbar segments improves motor control after spinal cord injury in animal models and humans. However, the physiological principles underlying the effect of this intervention remain poorly understood, which has limited the therapeutic approach to continuous stimulation applied to restricted spinal cord locations. Here we developed stimulation protocols that reproduce the natural dynamics of motoneuron activation during locomotion.
View Article and Find Full Text PDFAntidiuretic hormone or arginine vasopressin (AVP) increases water reabsorption in the collecting ducts of the kidney. Three decades ago, experimental models have shown that AVP may increase calcium reabsorption in rat kidney. The objective of this study was to assess whether AVP modulates renal calcium excretion in humans.
View Article and Find Full Text PDFCalpains are intracellular proteases that play a key role in inflammation/immunity. Rare studies show that they are partially externalized. However, the mechanism of this secretion and the functions of exteriorized calpains remain poorly understood.
View Article and Find Full Text PDFThe activation of the calpain system is involved in the repair process following myocardial infarction (MI). However, the impact of the inhibition of calpain by calpastatin, its natural inhibitor, on scar healing and left ventricular (LV) remodeling is elusive. Male mice ubiquitously overexpressing calpastatin (TG) and wild-type (WT) controls were subjected to an anterior coronary artery ligation.
View Article and Find Full Text PDFIntroduction: Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons as well as the presence of proteinaceous inclusions named Lewy bodies. α-synuclein (α-syn) is a major constituent of Lewy bodies, and the first disease-causing protein characterized in PD. Several α-syn-based animal models of PD have been developed to investigate the pathophysiology of PD, but none of them recapitulate the full picture of the disease.
View Article and Find Full Text PDFRenal stone incidence has progressively increased in industrialized countries, but the implication of Randall plaque in this epidemic remains unknown. Our objectives were to determine whether the prevalence of Randall plaque-related stones increased during the past decades after having analyzed 30,149 intact stones containing mainly calcium oxalate since 1989 (cross-sectional study), and to identify determinants associated with Randall plaque-related stones in patients (case-control study). The proportion of Randall plaque-related stones was assessed over 3 time periods: 1989-1991, 1999-2001, and 2009-2011.
View Article and Find Full Text PDFMed Sci Monit Basic Res
September 2014
Background: Sirtuin 1 (SIRT1) is a class III histone deacetylase that may play a critical role in several biological functions, including lifespan, stress, and inflammation. Our main objective was to evaluate SIRT1 activity in peripheral blood mononuclear cells (PBMCs) in patients with osteoporosis and to analyze the relationship between the SIRT 1 activity and markers of inflammation and bone remodelling.
Material And Methods: We performed a prospective monocentric study of patients with osteoporosis and measured the nuclear and cytoplasmic activities of SIRT1 in PBMCs.