Publications by authors named "Batzill M"

Article Synopsis
  • Inserting metal layers like Cr or Mn between transition-metal dichalcogenide (TMD) sheets creates new pseudo-2D nanomaterials by allowing metals to occupy energetically favorable spots.
  • This bottom-up synthesis technique results in metals arranging in ordered phases as their concentration increases, leading to metastable configurations.
  • The study also reveals that while dilute Cr atoms have high magnetic moments, increasing Cr concentrations lead to decreased moments, indicating antiferromagnetic ordering among Cr ions, highlighting potential for exploring quantum phenomena.
View Article and Find Full Text PDF

The interlayer interaction in Pt-dichalcogenides strongly affects their electronic structures. The modulations of the interlayer atom-coordination in vertical heterostructures based on these materials are expected to laterally modify these interlayer interactions and thus provide an opportunity to texture the electronic structure. To determine the effects of local variation of the interlayer atom coordination on the electronic structure of PtSe, van der Waals heterostructures of PtSe and PtTe have been synthesized by molecular beam epitaxy.

View Article and Find Full Text PDF

Unraveling structure-activity relationships is a key objective of catalysis. Unfortunately, the intrinsic complexity and structural heterogeneity of materials stand in the way of this goal, mainly because the activity measurements are area-averaged and therefore contain information coming from different surface sites. This limitation can be surpassed by the analysis of the noise in the current of electrochemical scanning tunneling microscopy (EC-STM).

View Article and Find Full Text PDF

Monolayer PtTe is a narrow gap semiconductor while PtTe is a metal. Here we show that the former can be transformed into the latter by reaction with vapor-deposited Pt atoms. The transformation occurs by nucleating the PtTe phase within PtTe islands, so that a metal-semiconductor junction is formed.

View Article and Find Full Text PDF

The adsorption and dissociation of water molecules on two-dimensional transition metal dichalcogenides (TMDs) is expected to be dominated by point defects, such as vacancies, and edges. At the same time, the role of grain boundaries, and particularly, mirror twinboundaries (MTBs), whose concentration in TMDs can be quite high, is not fully understood. Using density functional theory calculations, we investigate the interaction of water, hydroxyl groups, as well as oxygen and hydrogen molecules with MoSe monolayers when MTBs of various types are present.

View Article and Find Full Text PDF

The platinum-tellurium phase diagram exhibits various (meta)stable van der Waals (vdW) materials that can be constructed by stacking PtTe and PtTe layers. Monophase PtTe, being the thermodynamically most stable compound, can readily be grown as thin films. Obtaining the other phases (PtTe, PtTe, PtTe), especially in their ultimate thin form, is significantly more challenging.

View Article and Find Full Text PDF

Correction for 'Mirror twin boundaries in MoSe2 monolayers as one dimensional nanotemplates for selective water adsorption' by Jingfeng Li et al., Nanoscale, 2021, 13, 1038-1047, DOI: 10.1039/D0NR08345C.

View Article and Find Full Text PDF

Water adsorption on transition metal dichalcogenides and other 2D materials is generally governed by weak van der Waals interactions. This results in a hydrophobic character of the basal planes, and defects may play a significant role in water adsorption and water cluster nucleation. However, there is a lack of detailed experimental investigations on water adsorption on defective 2D materials.

View Article and Find Full Text PDF

Material growth by van der Waals epitaxy has the potential to isolate monolayer (ML) materials and synthesize ultrathin films not easily prepared by exfoliation or other growth methods. Here, the synthesis of the early transition metal (Ti, V, and Cr) tellurides by molecular beam epitaxy (MBE) in the mono- to few-layer regime is investigated. The layered ditellurides of these materials are known for their intriguing quantum- and layer dependent- properties.

View Article and Find Full Text PDF

Two-dimensional (2D) van der Waals ferromagnetic materials are emerging as promising candidates for applications in ultra-compact spintronic nanodevices, nanosensors, and information storage. Our recent discovery of the strong room temperature ferromagnetism in single layers of VSe grown on graphite or MoS substrate has opened new opportunities to explore these ultrathin magnets for such applications. In this paper, we present a new type of magnetic sensor that utilizes the single layer VSe film as a highly sensitive magnetic core.

View Article and Find Full Text PDF

Interlayer interactions in layered transition metal dichalcogenides are known to be important for describing their electronic properties. Here, we demonstrate that the absence of interlayer coupling in monolayer VTe also causes their structural modification from a distorted 1T' structure in bulk and multilayer samples to a hexagonal 1T structure in the monolayer. X-ray photoemission spectroscopy indicates that this structural transition is associated with electron transfer from the vanadium d bands to the tellurium atoms for the monolayer.

View Article and Find Full Text PDF

As compared to bulk solids, large surface-to-volume ratio of two-dimensional (2D) materials may open new opportunities for postsynthesis introduction of impurities into these systems by, for example, vapor deposition. However, it does not work for graphene or h-BN, as the dopant atoms prefer clustering on the surface of the material instead of getting integrated into the atomic network. Using extensive first-principles calculations, we show that counterintuitively most transition metal (TM) atoms can be embedded into the atomic network of the pristine molybdenum dichalcogenides (MoDCs) upon atom deposition at moderate temperatures either as interstitials or substitutional impurities, especially in MoTe, which has the largest spacing between the host atoms.

View Article and Find Full Text PDF

Mirror twin grain boundaries (MTBs) exist at the interface between two grains of 60° rotated hexagonal transition metal dichalcogenides (TMDC). These grain boundaries form a regular atomic structure that extends in one dimension and thus may be described as a one-dimensional (1D) lattice embedded in the 2D TMDC. In this review, the different atomic structures and compositions of these MTBs are discussed.

View Article and Find Full Text PDF

Phase engineering has extensively been used to achieve metallization of two-dimensional (2D) semiconducting materials, as it should boost their catalytic properties or improve electrical contacts. In contrast, here we demonstrate compositional phase change by incorporation of excess metals into the crystal structure. We demonstrate post-synthesis restructuring of the semiconducting MoTe or MoSe host material by unexpected easy incorporation of excess Mo into their crystal planes, which causes local metallization.

View Article and Find Full Text PDF

Surface-confined mixed metal oxides can have different chemical properties compared to their host metal oxide support. For this reason, mixed transition metal oxides can offer tunable redox properties. Herein, we use density functional theory to predict the stability of the (0001) surface termination for mixed metal oxides consisting of FeO, CrO and VO.

View Article and Find Full Text PDF

Reduced dimensionality and interlayer coupling in van der Waals materials gives rise to fundamentally different electronic , optical and many-body quantum properties in monolayers compared with the bulk. This layer-dependence permits the discovery of novel material properties in the monolayer regime. Ferromagnetic order in two-dimensional materials is a coveted property that would allow fundamental studies of spin behaviour in low dimensions and enable new spintronics applications.

View Article and Find Full Text PDF

Thin CrO(0 0 0 1) layers are formed by oxidation of a Cr(1 1 0) single crystal. This surface is further modified by growing an epitaxial ultrathin VO(0 0 0 1) film by reactive vapor deposition. Synchrotron based soft-x-ray photoemission spectroscopy and x-ray photoelectron diffraction are used to characterize the surface layers of these two corundum-structured oxides.

View Article and Find Full Text PDF

Twin grain boundaries in MoSe are metallic and undergo a metal to insulator Peierls transition at low temperature. Growth of MoSe by molecular beam epitaxy results in the spontaneous formation of a high density of these twin grain boundaries, likely as a mechanism to incorporate Se deficiency in the film. Using scanning tunneling microscopy, we study the grain boundary network that is formed in homoepitaxially grown MoSe and for MoSe grown heteroepitaxially on MoS and HOPG substrates.

View Article and Find Full Text PDF

Material line defects are one-dimensional structures but the search and proof of electron behaviour consistent with the reduced dimension of such defects has been so far unsuccessful. Here we show using angle resolved photoemission spectroscopy that twin-grain boundaries in the layered semiconductor MoSe exhibit parabolic metallic bands. The one-dimensional nature is evident from a charge density wave transition, whose periodicity is given by k/π, consistent with scanning tunnelling microscopy and angle resolved photoemission measurements.

View Article and Find Full Text PDF

Surface-assisted covalent linking of precursor molecules enables the fabrication of low-dimensional nanostructures, which include graphene nanoribbons. One approach to building functional multicomponent systems involves the lateral anchoring of organic heteromolecules to graphene. Here we demonstrate the dehydrogenative coupling of single porphines to graphene edges on the same metal substrate as used for graphene synthesis.

View Article and Find Full Text PDF

Oxide monolayers supported or intermixed with an oxide support are potential nanocatalysts whose properties are determined by the interplay with the support. For fundamental studies of monolayer oxides on metal oxide supports, well-defined systems are needed, but so far, the synthesis of monolayer oxides with long-range order on single-crystal oxide surfaces is rare. Here, we show by a combination of scanning tunneling microscopy, photoemission spectroscopy, and density functional theory (DFT)-based computational analysis that the rutile TiO2(011) surface supports the formation of an ordered mixed FeTiO3 monolayer.

View Article and Find Full Text PDF

Growth of graphene by chemical vapor deposition on metal supports has become a promising approach for the large-scale synthesis of high quality graphene. Decoupling of the graphene from the metal has been achieved by either mechanical transfer or intercalation of elements/molecules in between the metal and graphene. Here we show that metal stabilized two-dimensional (2D)-oxide monolayers can be grown in between graphene and the metal substrate thus forming 2D-heterostructures that enable tuning of the materials properties of graphene.

View Article and Find Full Text PDF

Artificial heterostructures assembled from van der Waals materials promise to combine materials without the traditional restrictions in heterostructure-growth such as lattice matching conditions and atom interdiffusion. Simple stacking of van der Waals materials with diverse properties would thus enable the fabrication of novel materials or device structures with atomically precise interfaces. Because covalent bonding in these layered materials is limited to molecular planes and the interaction between planes are very weak, only small changes in the electronic structure are expected by stacking these materials on top of each other.

View Article and Find Full Text PDF