The generation of an active [FeFe]-hydrogenase requires the synthesis of a complex metal center, the H-cluster, by three dedicated maturases: the radical S-adenosyl-l-methionine (SAM) enzymes HydE and HydG, and the GTPase HydF. A key step of [FeFe]-hydrogenase maturation is the synthesis of the dithiomethylamine (DTMA) bridging ligand, a process recently shown to involve the aminomethyl-lipoyl-H-protein from the glycine cleavage system, whose methylamine group originates from serine and ammonium. Here we use functional assays together with electron paramagnetic resonance and electron-nuclear double resonance spectroscopies to show that serine or aspartate together with their respective ammonia-lyase enzymes can provide the nitrogen for DTMA biosynthesis during in vitro [FeFe]-hydrogenase maturation.
View Article and Find Full Text PDFHere we describe maturation of the [FeFe]-hydrogenase from its [4Fe-4S]-bound precursor state by using the synthetic complex [Fe(μ-SH)(CN)(CO)] together with HydF and components of the glycine cleavage system, but in the absence of the maturases HydE and HydG. This semisynthetic and fully-defined maturation provides new insights into the nature of H-cluster biosynthesis.
View Article and Find Full Text PDFThe [FeFe]-hydrogenase H-cluster is a complex organometallic cofactor whose assembly and installation requires three dedicated accessory proteins referred to as HydE, HydF, and HydG. The roles of these maturases and the precise mechanisms by which they synthesize and insert the H-cluster are not fully understood. This Minireview will focus on new insights into the [FeFe]-hydrogenase maturation process that have been provided by in vitro approaches in which the biosynthetic pathway has been partially or fully reconstructed using semisynthetic and enzyme-based approaches.
View Article and Find Full Text PDFMaturation of [FeFe]-hydrogenase (HydA) involves synthesis of a CO, CN , and dithiomethylamine (DTMA)-coordinated 2Fe subcluster that is inserted into HydA to make the active hydrogenase. This process requires three maturation enzymes: the radical S-adenosyl-l-methionine (SAM) enzymes HydE and HydG, and the GTPase HydF. In vitro maturation with purified maturation enzymes has been possible only when clarified cell lysate was added, with the lysate presumably providing essential components for DTMA synthesis and delivery.
View Article and Find Full Text PDF