Publications by authors named "Batsheva Kerem"

Common fragile sites (CFS) are specific genomic regions prone to chromosomal instability under conditions of DNA replication stress. CFSs manifest as breaks, gaps, and constrictions on metaphase chromosomes under mild replication stress. These replication-sensitive CFS regions are preferentially unstable during cancer development, as reflected by their association with copy number variants (CNVs) frequently arise in most tumor types.

View Article and Find Full Text PDF

Recent advances in the therapeutic potential of RNA-related treatments, specifically for antisense oligonucleotide (ASO)-based drugs, have led to increased numbers of ASO regulatory approvals. In this study, we focus on SPL84, an inhaled ASO-based drug, developed for the treatment of the pulmonary disease cystic fibrosis (CF). Pulmonary drug delivery is challenging, due to a variety of biological, physical, chemical, and structural barriers, especially when targeting the cell nucleus.

View Article and Find Full Text PDF

Rationale: Limited information is available on the clinical status of people with Cystic Fibrosis (pwCF) carrying 2 nonsense mutations (PTC/PTC). The main objective of this study was to compare disease severity between pwCF PTC/PTC, compound heterozygous for F508del and PTC (F508del/PTC) and homozygous for F508del (F508del+/+).

Methods: Based on the European CF Society Patient Registry clinical data of pwCF living in high and middle income European and neighboring countries, PTC/PTC (n = 657) were compared with F508del+/+ (n = 21,317) and F508del/PTC(n = 4254).

View Article and Find Full Text PDF

Background: Elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA) significantly improves health outcomes in people with cystic fibrosis (pwCF) carrying one or two F508del mutations. According to in vitro assays performed in FRT cells, 178 additional mutations respond to ELX/TEZ/IVA. The N1303K mutation is not included in this list of mutations.

View Article and Find Full Text PDF

Most people with Cystic Fibrosis (PwCF) harbor Cystic Fibrosis Transmembrane Conductance (CFTR) mutations that respond to highly effective CFTR modulators (HEM); however, a small fraction of non-responsive variants will require alternative approaches for treatment. Furthermore, the long-term goal to develop a cure for CF will require novel therapeutic strategies. Nucleic acid-based approaches offer the potential to address all CF-causing mutations and possibly a cure for all PwCF.

View Article and Find Full Text PDF

DNA replication is a complex process tightly regulated to ensure faithful genome duplication, and its perturbation leads to DNA damage and genomic instability. Replication stress is commonly associated with slow and stalled replication forks. Recently, accelerated replication has emerged as a non-canonical form of replication stress.

View Article and Find Full Text PDF

Background: Antisense oligonucleotide- based drugs for splicing modulation were recently approved for various genetic diseases with unmet need. Here we aimed to generate skipping over exon 23 of the CFTR transcript, to eliminate the W1282X nonsense mutation and avoid RNA degradation induced by the nonsense mediated mRNA decay mechanism, allowing production of partially active CFTR proteins lacking exon 23.

Methods: ∼80 ASOs were screened in 16HBEge W1282X cells.

View Article and Find Full Text PDF

Background: Antisense oligonucleotide (ASO)-based drugs for splicing modulation were recently approved for various genetic diseases with unmet need. Here we aimed to develop an ASO-based splicing modulation therapy for Cystic Fibrosis (CF) patients carrying the 3849+10 kb C-to-T splicing mutation in the CFTR gene.

Methods: We have screened, in FRT cells expressing the 3849+10 kb C-to-T splicing mutation, ~30 2'-O-Methyl-modified phosphorothioate ASOs, targeted to prevent the recognition and inclusion of a cryptic exon generated due to the mutation.

View Article and Find Full Text PDF

Common fragile sites (CFSs) are regions susceptible to replication stress and are hotspots for chromosomal instability in cancer. Several features were suggested to underlie CFS instability, however, these features are prevalent across the genome. Therefore, the molecular mechanisms underlying CFS instability remain unclear.

View Article and Find Full Text PDF

Gene therapy offers great promise for cystic fibrosis which has never been quite fulfilled due to the challenges of delivering sufficient amounts of the CFTR gene and expression persistence for a sufficient period of time in the lungs to have any effect. Initial trials explored both viral and non-viral vectors but failed to achieve a significant breakthrough. However, in recent years, new opportunities have emerged that exploit our increased knowledge and understanding of the biology of CF and the airway epithelium.

View Article and Find Full Text PDF

Common fragile sites (CFSs) are genomic regions prone to breakage under replication stress conditions recurrently rearranged in cancer. Many CFSs are enriched with AT-dinucleotide rich sequences (AT-DRSs) which have the potential to form stable secondary structures upon unwinding the double helix during DNA replication. These stable structures can potentially perturb DNA replication progression, leading to genomic instability.

View Article and Find Full Text PDF

Common fragile sites (CFSs) are specific genomic regions in normal chromosomes that exhibit genomic instability under DNA replication stress. As replication stress is an early feature of cancer development, CFSs are involved in the signature of genomic instability found in malignant tumors. The landscape of CFSs is tissue-specific and differs under different replication stress inducers.

View Article and Find Full Text PDF

Premature termination codons (PTC) originate from nucleotide substitution introducing an in-frame PTC. They induce truncated, usually non-functional, proteins, degradation of the PTC containing transcripts by the nonsense-mediated decay (NMD) pathway and abnormal exon skipping. Readthrough compounds facilitate near cognate amino-acyl-tRNA incorporation, leading potentially to restoration of a functional full-length protein.

View Article and Find Full Text PDF

DNA replication stress is one of the early drivers enabling the ongoing acquisition of genetic changes arising during tumorigenesis. As such, it is a feature of most pre-malignant and malignant cells. In this review article, we focus on the early events initiating DNA replication stress and the preferential sensitivity of common fragile sites (CFSs) to this stress.

View Article and Find Full Text PDF

Human pluripotent stem cells (hPSCs) frequently acquire chromosomal aberrations, including aneuploidy, during culture. Recently, we identified a replication stress-based mechanism leading to ongoing chromosomal instability in aneuploid hPSCs that may also operate during the initiation of instability in diploid cells.

View Article and Find Full Text PDF

Oncogene expression can lead to replication stress and genome instability. Recently, we identified oncogene-induced fragile sites (FSs) and revealed that the landscape of recurrent fragility in the same cell type is dynamic. This implies an additional level of complexity in the molecular basis of recurrent fragility in cancer.

View Article and Find Full Text PDF

Common fragile sites (CFSs) are chromosomal regions characterized as hotspots for breakage and chromosomal rearrangements following DNA replication stress. They are preferentially unstable in pre-cancerous lesions and during cancer development. Recently CFSs were found to be tissue- and even oncogene-induced specific, thus indicating an unforeseen complexity.

View Article and Find Full Text PDF

Aneuploidy is a hallmark of cancer and underlies genetic disorders characterized by severe developmental defects, yet the molecular mechanisms explaining its effects on cellular physiology remain elusive. Here we show, using a series of human cells with defined aneuploid karyotypes, that gain of a single chromosome increases genomic instability. Next-generation sequencing and SNP-array analysis reveal accumulation of chromosomal rearrangements in aneuploids, with break point junction patterns suggestive of replication defects.

View Article and Find Full Text PDF

The presence of dormant, microscopic cancerous lesions poses a major obstacle for the treatment of metastatic and recurrent cancers. While it is well-established that microRNAs play a major role in tumorigenesis, their involvement in tumor dormancy has yet to be fully elucidated. We established and comprehensively characterized pairs of dormant and fast-growing human osteosarcoma models.

View Article and Find Full Text PDF

Human pluripotent stem cells (hPSCs) frequently acquire chromosomal aberrations such as aneuploidy in culture. These aberrations progressively increase over time and may compromise the properties and clinical utility of the cells. The underlying mechanisms that drive initial genomic instability and its continued progression are largely unknown.

View Article and Find Full Text PDF

Chromosomal instability in early cancer stages is caused by replication stress. One mechanism by which oncogene expression induces replication stress is to drive cell proliferation with insufficient nucleotide levels. Cancer development is driven by alterations in both genetic and environmental factors.

View Article and Find Full Text PDF

Recurrent genomic instability in cancer is attributed to positive selection and/or the sensitivity of specific genomic regions to breakage. Among these regions are fragile sites (FSs), genomic regions sensitive to replication stress conditions induced by the DNA polymerase inhibitor aphidicolin. However, the basis for the majority of cancer genomic instability hotspots remains unclear.

View Article and Find Full Text PDF

Common fragile sites (CFSs) are regions within the normal chromosomal structure that were characterized as hotspots for genomic instability in cancer almost 30 years ago. In recent years, many efforts have been made to understand the basis of CFS fragility and their involvement in the genomic signature of instability found in malignant tumors. CFSs are among the first regions to undergo genomic instability during cancer development because of their intrinsic sensitivity to replication stress conditions, which result from oncogene expression.

View Article and Find Full Text PDF

Colorectal cancer develops in a sequential, evolutionary process, leading to a heterogenic tumor. Comprehensive molecular studies of colorectal cancer have been previously performed; still, the process of carcinogenesis is not fully understood. We utilized gene expression patterns from 94 samples including normal, adenoma, and adenocarcinoma colon biopsies and performed a coexpression network analysis to determine gene expression trajectories of 8,000 genes across carcinogenesis.

View Article and Find Full Text PDF