Sound-level coding in the auditory nerve is achieved through the progressive recruitment of auditory nerve fibers (ANFs) that differ in threshold of activation and in the stimulus level at which the spike rate saturates. To investigate the functional state of the ANFs, the electrophysiological tests routinely used in clinics only capture the first action potentials firing in synchrony at the onset of the acoustic stimulation. Assessment of other properties (e.
View Article and Find Full Text PDFAuditory nerve fibers (ANFs) convey acoustic information from the sensory cells to the brainstem using an elaborated neural code based on both spike timing and rate. As the stimulus tone frequency increases, time coding fades and ceases, resulting in high-frequency tone encoding that relies mostly on the spike discharge rate. Here, we recapitulated our recent single-unit data from gerbil's auditory nerve to highlight the most relevant mode of coding (spike timing versus spike rate) in tone-in-noise.
View Article and Find Full Text PDFAuditory nerve fibers (ANFs) transmit acoustic information from the sensory hair cells to the cochlear nuclei. In experimental and clinical audiology, probing the whole ANF population remains a difficult task, as the ANFs differ greatly in their threshold and onset response to sound. Thus, low spontaneous rate (SR) fibers, which have rather higher thresholds, delay and larger jitter in their first spike latency are not detectable in the far-field compound action potential of the auditory nerve.
View Article and Find Full Text PDFGerbils possess a very specialized cochlea in which the low-frequency inner hair cells (IHCs) are contacted by auditory nerve fibers (ANFs) having a high spontaneous rate (SR), whereas high frequency IHCs are innervated by ANFs with a greater SR-based diversity. This specificity makes this animal a unique model to investigate, in the same cochlea, the functional role of different pools of ANFs. The distribution of the characteristic frequencies of fibers shows a clear bimodal shape (with a first mode around 1.
View Article and Find Full Text PDFSound-evoked compound action potential (CAP), which captures the synchronous activation of the auditory nerve fibers (ANFs), is commonly used to probe deafness in experimental and clinical settings. All ANFs are believed to contribute to CAP threshold and amplitude: low sound pressure levels activate the high-spontaneous rate (SR) fibers, and increasing levels gradually recruit medium- and then low-SR fibers. In this study, we quantitatively analyze the contribution of the ANFs to CAP 6 days after 30-min infusion of ouabain into the round window niche.
View Article and Find Full Text PDFAnn Otol Rhinol Laryngol
August 2011
Objectives: We compare the evolution of electrode impedance values (IVs) following either conventional cochlear implantation or implantation by the soft surgery (SS) technique.
Methods: We performed a retrospective chart review of 20 consecutive adult patients who underwent implantation with the Nucleus CA 24 device between 2004 and 2007. Five patients with preoperative residual hearing at the frequencies 256, 512, and 1,024 Hz underwent implantation by an SS cochlear implantation technique (SS group), and the 15 other patients underwent a conventional implantation technique (conventional cochleostomy [CC] group).