Publications by authors named "Batrakova E"

Ketoaldehydes are key intermediates in biochemical processes including carbohydrate, lipid, and amino acid metabolism. Despite their crucial role in the interstellar synthesis of essential biomolecules necessary for the Origins of Life, their formation mechanisms have largely remained elusive. Here, we report the first bottom-up formation of methylglyoxal (CHC(O)CHO)-the simplest ketoaldehyde-through the barrierless recombination of the formyl (HĊO) radical with the acetyl (CHĊO) radical in low-temperature interstellar ice analogs upon exposure to energetic irradiation as proxies of galactic cosmic rays.

View Article and Find Full Text PDF
Article Synopsis
  • Beclin1 is crucial for starting and regulating autophagy in cells and also plays a role in viral replication and immune response.
  • The study used a specific delivery method for targeting Beclin1 in the brain of mice, revealing that it can reduce HIV-related inflammation and viral replication.
  • Although Beclin1 impacts HIV replication and cytokine release, it does not appear to influence locomotor impairments in HIV-infected mice, suggesting other factors may contribute to those motor issues.
View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a new drug delivery system using extracellular vesicles (EVs) to transport the enzyme TPP1 to treat Batten disease.
  • A single injection of TPP1-loaded EVs showed over 20% delivery efficiency to the brain and demonstrated cumulative therapeutic effects in a mouse model.
  • The EV-TPP1 treatment activated the autophagy pathway, reduced harmful lipofuscin aggregates, decreased inflammation, and improved neuron survival, highlighting the potential for enhancing brain health.
View Article and Find Full Text PDF

Many therapeutic formulations incorporate poly(ethylene glycol) (PEG) as a stealth component to minimize early clearance. However, PEG is immunogenic and susceptible to accelerated clearance after multiple administrations. Here, we present two novel reformulations of a polyion complex (PIC), originally composed of poly(ethylene glycol)-b-poly(glutamic acid) (PEG-PLE) and brain-derived neurotrophic factor (BDNF), termed Nano-BDNF (Nano-BDNF PEG-PLE).

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are cell-derived nanoparticles that facilitate transport of proteins, lipids, and genetic material, playing important roles in intracellular communication. They have remarkable potential as non-toxic and non-immunogenic nanocarriers for drug delivery to unreachable organs and tissues, in particular, the central nervous system (CNS). Herein, we developed a novel platform based on macrophage-derived EVs to treat Parkinson disease (PD).

View Article and Find Full Text PDF

Discovery of novel drug delivery systems to the brain remains a key task for successful treatment of neurodegenerative disorders. Herein, the biodistribution of immunocyte-based carriers, peripheral blood mononuclear cells (PBMCs), and monocyte-derived EVs are investigated in adult rhesus macaques using longitudinal PET/MRI imaging. Cu-labeled drug carriers are introduced via different routes of administration: intraperitoneal (IP), intravenous (IV), or intrathecal (IT) injection.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) represent a next generation drug delivery system that combines nanoparticle size with extraordinary ability to cross biological barriers, reduced immunogenicity, and low offsite toxicity profiles. A successful application of this natural way of delivering biological compounds requires deep understanding EVs intrinsic properties inherited from their parent cells. Herein, we evaluated EVs released by cells of different origin, with respect to drug delivery to the brain for treatment of neurodegenerative disorders.

View Article and Find Full Text PDF

This work is aimed to compare the effectiveness of parenteral and inhalation bronchial asthma treatment in combination with glucocorticosteroids and bronchodilators. The study was conducted in 2020 in Botkin City Clinical Hospital (Moscow, the Russian Federation). Case histories of 106 patients diagnosed with bronchial asthma exacerbation of moderate severity were analyzed.

View Article and Find Full Text PDF

The antioxidant enzyme catalase represents an important therapeutic target due to its role in mitigating cellular reactive oxygen species that contribute to the pathogenesis of many disease states. Catalase-SKL (CAT-SKL), a genetically engineered, peroxisome-targeted, catalase derivative, was developed in order to increase the therapeutic potential of the enzyme, and has previously been shown to be effective in combating oxidative stress in a variety of in vitro and in vivo models, thereby mitigating cellular degeneration and death. In the present study we addressed important considerations for the development of an extracellular vesicle-packaged version of CAT-SKL (evCAT-SKL) as a therapeutic for neurodegenerative diseases by investigating its delivery potential to the brain when administered intranasally, and safety by assessing off-target toxicity in a mouse model.

View Article and Find Full Text PDF

Macrophages are desirable targets for gene therapy of cancer and other diseases. Cationic diblock copolymers of polyethylene glycol (PEG) and poly-L-lysine (PLL) or poly{N-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} (pAsp(DET)) are synthesized and used to form polyplexes with a plasmid DNA (pDNA) that are decorated with mannose moieties, serving as the targeting ligands for the C type lectin receptors displayed at the surface of macrophages. The PEG-b-PLL copolymers are known for its cytotoxicity, so PEG-b-PLL-based polyplexes are cross-linked using reducible reagent dithiobis(succinimidyl propionate) (DSP).

View Article and Find Full Text PDF

Using nanoparticle-based RNA interference (RNAi), we have previously shown that silencing the host autophagic protein, Beclin1, in HIV-infected human microglia and astrocytes restricts HIV replication and its viral-associated inflammatory responses. Here, we confirmed the efficacy of Beclin1 small interfering RNA (siBeclin1) as an adjunctive antiviral and anti-inflammatory therapy in myeloid human microglia and primary human astrocytes infected with HIV, both with and without exposure to combined antiretroviral (cART) drugs. To specifically target human microglia and human astrocytes, we used a nanoparticle (NP) comprised of linear cationic polyethylenimine (PEI) conjugated with mannose (Man) and encapsulated with siBeclin1.

View Article and Find Full Text PDF

Drug nanoformulations hold remarkable promise for the efficient delivery of therapeutics to a disease site. Unfortunately, artificial nanocarriers, mostly liposomes and polymeric nanoparticles, show limited applications due to the unfavorable pharmacokinetics and rapid clearance from the blood circulation by the reticuloendothelial system (RES). Besides, many of them have high cytotoxicity, low biodegradability, and the inability to cross biological barriers, including the blood brain barrier.

View Article and Find Full Text PDF

HIV-1 infects 39.5 million people worldwide, and cART is effective in preventing viral spread by reducing HIV-1 plasma viral loads to undetectable levels. However, viral reservoirs persist by mechanisms, including the inhibition of autophagy by HIV-1 proteins (i.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are known to perform important biological functions and have been implicated in multiple disease pathogeneses, including HIV and drugs of abuse. EVs can carry biological molecules via biofluids such as plasma and cerebrospinal fluids (CSF) from healthy or disease organs to distant organs and deliver biomolecules to recipient cells that subsequently alter the physiology of the recipient organs. As biocarriers, EVs have the potential to be developed as non-invasive biomarkers for disease pathogenesis and drug abuse, as the level of specific EV components can be altered under disease/drug abuse conditions.

View Article and Find Full Text PDF

Cell-based drug delivery systems have generated an increasing interest in recent years. We previously demonstrated that systemically administered macrophages deliver therapeutics to CNS, including glial cell line-derived neurotrophic factor (GDNF), and produce potent effects in Parkinson's disease (PD) mouse models. Herein, we report fundamental changes in biodistribution and brain bioavailability of macrophage-based formulations upon different routes of administration: intravenous, intraperitoneal, or intrathecal injections.

View Article and Find Full Text PDF

CLN2 Batten disease (BD) is one of a broad class of lysosomal storage disorders that is characterized by the deficiency of lysosomal enzyme, TPP1, resulting in a build-up of toxic intracellular storage material in all organs and subsequent damage. A major challenge for BD therapeutics is delivery of enzymatically active TPP1 to the brain to attenuate progressive loss of neurological functions. To accomplish this daunting task, we propose the harnessing of naturally occurring nanoparticles, extracellular vesicles (EVs).

View Article and Find Full Text PDF

The potency of polymeric micelle-based doxorubicin, SP1049C, against cancer stem cells (CSCs) in triple negative breast cancer (TNBC) is evaluated. CSCs with high epithelial specific antigen (ESA), high CD44 and low CD24 expression levels were derived from the TNBC cancer cells, MDA-MB-231 and MDA-MB-468. These CSCs were resistant to free doxorubicin (Dox) and displayed increased colony formation, migration, and invasion in vitro, along with higher tumorigenicity in vivo, compared to the parental and non-CSCs counterparts.

View Article and Find Full Text PDF
Article Synopsis
  • This study explores using macrophages as a delivery system for siRNA to target cancer cells in solid tumors, an area that presents significant challenges in treatment.
  • It was found that macrophages can effectively transfer siRNA to cancer cells, with the efficiency depending on the amount of siRNA and the number of macrophages used.
  • Specifically, using CIB1-siRNA within macrophages reduced tumor growth and gene expression in breast cancer cells, indicating that manipulating macrophages could enhance cancer treatment strategies.
View Article and Find Full Text PDF

Efficient targeted delivery of anticancer agents to TNBC cells remains one of the greatest challenges to developing therapies. The lack of tumor-specific markers, aggressive nature of the tumor, and unique propensity to recur and metastasize make TNBC tumors more difficult to treat than other subtypes. We propose to exploit natural ability of macrophages to target cancer cells by means of extracellular vesicles (EVs) as drug delivery vehicles for chemotherapeutic agents, paclitaxel (PTX) and doxorubicin (Dox).

View Article and Find Full Text PDF

There is an unmet medical need in the area of Parkinson's disease (PD) to develop novel therapeutic approaches that can stop and reverse the underlying mechanisms responsible for the neuronal death. We previously demonstrated that systemically administered autologous macrophages transfected ex vivo to produce glial cell line-derived neurotrophic factor (GDNF) readily migrate to the mouse brain with acute toxin-induced neuroinflammation and ameliorate neurodegeneration in PD mouse models. We hypothesized that the high level of cytokines due to inflammatory process attracted GDNF-expressing macrophages and ensured targeted drug delivery to the PD brain.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are promising natural nanocarriers for delivery of various types of therapeutics. Earlier engineered EV-based formulations for neurodegenerative diseases and cancer are reported. Herein, the use of macrophage-derived EVs for brain delivery of a soluble lysosomal enzyme tripeptidyl peptidase-1, TPP1, to treat a lysosomal storage disorder, Neuronal Ceroid Lipofuscinoses 2 (CLN2) or Batten disease, is investigated.

View Article and Find Full Text PDF

Reactive oxygen and nitrogen species are indispensable in cellular physiology and signaling. Overproduction of these reactive species or failure to maintain their levels within the physiological range results in cellular redox dysfunction, often termed cellular oxidative stress. Redox dysfunction in turn is at the molecular basis of disease etiology and progression.

View Article and Find Full Text PDF