Publications by authors named "Batra V"

Objective: To correlate the cytomorphologic spectrum of giant cell tumor of tendon sheath (GCTTS) with clinical and histologic findings and determine key features helpful in preoperative diagnosis.

Study Design: Retrospective analysis was done on 48 cases diagnosed cytologically over 9 years. Cases were divided into 2 groups: in group 1 cytology and histology were available (12), and in group 2 cytology alone was available (36).

View Article and Find Full Text PDF

We report the crystallographic structures of DNA polymerase beta with dG-dAMPCPP and dC-dAMPCPP mismatches in the active site. These premutagenic structures were obtained with a nonhydrolyzable incoming nucleotide analog, dAMPCPP, and Mn(2+). Substituting Mn(2+) for Mg(2+) significantly decreases the fidelity of DNA synthesis.

View Article and Find Full Text PDF

Based on a recent ternary complex crystal structure of human DNA polymerase beta with a G:A mismatch in the active site, we carried out a theoretical investigation of the catalytic mechanism of incorrect nucleotide incorporation using molecular dynamics simulation, quantum mechanics, combined quantum mechanics, and molecular mechanics methods. A two-stage mechanism is proposed with a nonreactive active-site structural rearrangement prechemistry step occurring before the nucleotidyl transfer reaction. The free energy required for formation of the prechemistry state is found to be the major factor contributing to the decrease in the rate of incorrect nucleotide incorporation compared with correct insertion and therefore to fidelity enhancement.

View Article and Find Full Text PDF

Piperaquine phosphate is an orally active bisquinolone antimalarial drug that has been used for the past 3 decades. The authors report the safety, tolerability, and pharmacokinetics of piperaquine from a classical controlled phase I study. It was a double-blind, randomized, parallel-group, placebo-controlled, and single- and multiple-dose study.

View Article and Find Full Text PDF

There is lot of interest in the folate metabolism because of the essential role of folate coenzymes in nucleic acid synthesis. Gamma (gamma) radiation is well known for inducing damage in the DNA. To counteract these damage, a variety of DNA repair pathways have evolved that require regular supply of DNA bases whose biosynthesis in turn depends on sufficient pools of folate dependent enzymes like dihydrofolate reductase (DHFR).

View Article and Find Full Text PDF

Agro-based pulp and paper mills in India are one of the most polluting industries; in addition, they are high consumers of raw water. Growing scarcity of high quality freshwater as well as stringent regulatory standards is compelling these units to explore appropriate water management options. Based on data obtained through a questionnaire survey and plant visits, this work provides an overview of the water use and effluent treatment status in Indian agro-residue and recycled pulp and paper mills.

View Article and Find Full Text PDF

A simple, sensitive and rapid liquid chromatography/tandem mass spectrometric (LC-MS/MS) method was developed and validated for quantification of piperaquine, an antimalarial drug, in human plasma using its structural analogue, piperazine bis chloroquinoline as internal standard (IS). The method involved a simple protein precipitation with methanol followed by rapid isocratic elution of analytes with 10mM ammonium acetate buffer/methanol/formic acid/ammonia solution (25/75/0.2/0.

View Article and Find Full Text PDF

The mammalian family X DNA polymerases (DNA polymerases beta, lambda, mu, and TdT) contribute to base excision repair and double-strand break repair by virtue of their ability to fill short gaps in DNA. Structural information now exists for all four of these enzymes, making this the first mammalian polymerase family whose structural portrait is complete. Here we consider how distinctive structural features of these enzymes contribute to their biological functions in vivo.

View Article and Find Full Text PDF

A simple, sensitive and rapid liquid chromatography/tandem mass spectrometric (LC-MS/MS) method was developed and validated for quantification of chloroquine, an antimalarial drug, in plasma using its structural analogue, piperazine bis chloroquinoline as internal standard (IS). The method is based on simple protein precipitation with methanol followed by a rapid isocratic elution with 10 mM ammonium acetate buffer/methanol (25/75, v/v, pH 4.6) on Chromolith SpeedROD RP-18e reversed phase chromatographic column and subsequent analysis by mass spectrometry in the multiple reaction monitoring mode (MRM).

View Article and Find Full Text PDF

DNA polymerase catalysis and fidelity studies typically compare incorporation of "right" versus "wrong" nucleotide bases where the leaving group is pyrophosphate. Here we use dGTP analogues replacing the beta,gamma-bridging O with CH2, CHF, CF2, or CCl2 to explore leaving-group effects on the nucleotidyl transfer mechanism and fidelity of DNA polymerase (pol) beta. T.

View Article and Find Full Text PDF

We have determined the crystal structure of the human base excision repair enzyme DNA polymerase beta (Pol beta) in complex with a 1-nt gapped DNA substrate containing a template N2-guanine adduct of the tumorigenic (-)-benzo[c]phenanthrene 4R,3S-diol 2S,1R-epoxide in the gap. Nucleotide insertion opposite this adduct favors incorrect purine nucleotides over the correct dCMP and hence can be mutagenic. The structure reveals that the phenanthrene ring system is stacked with the base pair immediately 3' to the modified guanine, thereby occluding the normal binding site for the correct incoming nucleoside triphosphate.

View Article and Find Full Text PDF

X-ray crystallographic structures of human DNA polymerase beta with nonhydrolyzable analogs containing all atoms in the active site required for catalysis provide a secure starting point for a theoretical analysis (quantum mechanics/molecular mechanics) of the mechanism of chemistry without biasing of modeling assumptions as required in previous studies. These structures provide the basis for a detailed quantum mechanics/molecular mechanics study of the path for the complete transfer of a monophosphate nucleoside donor to the sugar acceptor in the active site. The reaction is largely associative with the main energetic step preceded by proton transfer from the terminal primer deoxyribose O3' to Asp-256.

View Article and Find Full Text PDF

DNA methylation is an important epigenetic mechanism of transcriptional control, which plays an essential role in maintaining cellular function. Role of one-carbon transfer agents/methyl donors namely folate, choline and methionine in DNA methylation has been the subject of extensive investigation. The methylation pattern of DNA is established during embryogenesis by DNA methyltransferase 3 (dnmt3) and is subsequently maintained by maintenance methylation activity of the enzyme DNA methyltransferase 1 (dnmt1).

View Article and Find Full Text PDF

The possible beneficial radio-protective effects of one-carbon transfer agents namely folate, choline and methionine have been the subject of extensive investigation. Ionizing radiation is known to extensively damage the DNA. One-carbon transfer agents have been proposed to have important role in context of DNA repair via their role in purine and thymidylate synthesis and in DNA methylation.

View Article and Find Full Text PDF

The molecular details of the nucleotidyl transferase reaction have remained speculative, as strategies to trap catalytic intermediates for structure determination utilize substrates lacking the primer terminus 3'-OH and catalytic Mg2+, resulting in an incomplete and distorted active site geometry. Since the geometric arrangement of these essential atoms will impact chemistry, structural insight into fidelity strategies has been hampered. Here, we present a crystal structure of a precatalytic complex of a DNA polymerase with bound substrates that include the primer 3'-OH and catalytic Mg2+.

View Article and Find Full Text PDF

Background: Vasodilator-stimulated phosphoprotein (VASP) mediates focal adhesion, actin filament binding and polymerization in a variety of cells, thereby inhibiting cell movement. Phosphorylation of VASP via cAMP and cGMP dependent protein kinases releases this "brake" on cell motility. Thus, phosphorylation of VASP may be necessary for epithelial cell repair of damage from allergen-induced inflammation.

View Article and Find Full Text PDF

The purpose of this study was to evaluate the effects of population size, number of samples per individual, and level of interindividual variability (IIV) on the accuracy and precision of pharmacodynamic (PD) parameter estimates. Response data were simulated from concentration input data for an inhibitory sigmoid drug efficacy (E(max)) model using Nonlinear Mixed Effect Modeling, version 5 (NONMEM). Seven designs were investigated using different concentration sampling windows ranging from 0 to 3 EC(50) (EC(50) is the drug concentration at 50% of the E(max)) units.

View Article and Find Full Text PDF

A large number of biochemical and genetic studies have demonstrated the involvement of DNA polymerase beta (Pol beta) in mammalian base excision repair (BER). Pol beta participates in BER sub-pathways by contributing gap filling DNA synthesis and lyase removal of the 5'-deoxyribose phosphate (dRP) group from the cleaved abasic site. To better understand the mechanism of the dRP lyase reaction at an atomic level, we determined a crystal structure of Pol beta complexed with 5'-phosphorylated abasic sugar analogs in nicked DNA.

View Article and Find Full Text PDF

DNA polymerases occasionally insert the wrong nucleotide. For this error to become a mutation, the mispair must be extended. We report a structure of DNA polymerase beta (pol beta) with a DNA mismatch at the boundary of the polymerase active site.

View Article and Find Full Text PDF

We report an interesting and rare association of congenital Becker nevus with lichen planus occurring in an 11-year-old boy. Both conditions were confirmed histopathologically.

View Article and Find Full Text PDF

Adenosine, an important signaling molecule in asthma, produces bronchoconstriction in asthmatics. Adenosine produces bronchoconstriction in allergic rabbits, primates, and humans by activating A1 adenosine receptors (ARs). Effects of L-97-1 [3-[2-(4-aminophenyl)-ethyl]-8-benzyl-7-{2-ethyl-(2-hydroxyethyl)-amino]-ethyl}-1-propyl-3,7-dihydro-purine-2,6-dione] a water-soluble, small molecule A1 AR antagonist were investigated on early and late phase allergic responses (EAR and LAR) in a hyper-responsive rabbit model of asthma.

View Article and Find Full Text PDF

Despite the widespread use of tobacco and marijuana by cocaine abusers, it remains unclear whether combined tobacco and marijuana smoking is more harmful than tobacco smoking alone in cocaine abusers. We investigated the differences in medical symptoms reported among 34 crack cocaine abusers who did not smoke tobacco or marijuana (C), 86 crack cocaine abusers who also smoked tobacco (C + T), and 48 crack abusers who smoked both tobacco and marijuana (C + T + M). Medical symptoms were recorded using a 134-item self-report instrument (MILCOM), and drug use was assessed using the Addiction Severity Index (ASI).

View Article and Find Full Text PDF

The role of various enzymes in folate dependent one-carbon metabolism, which are involved in mobilizing the folate pool for DNA synthesis and the DNA methylation reaction, was investigated. Male Swiss mice (6 weeks old) were subjected to 2, 5 and 7 Gy total body gamma-irradiation. The animals were killed at intervals of 24, 48, 72, 96, 120 and 192 h and the livers were removed.

View Article and Find Full Text PDF