Publications by authors named "Batkova M"

Article Synopsis
  • The Roma population, numbering between 10 to 14 million worldwide, faces unique genetic challenges due to a high level of consanguinity, resulting in specific hereditary diseases that are often underdiagnosed.
  • Recent clinical evaluations at the ERN CRANIO center in Prague have highlighted various rare genetic disorders, including congenital cataract syndrome and non-syndromic deafness linked to specific genetic mutations.
  • This study emphasizes the need for awareness and accurate diagnosis of dental issues that can aid in better treatment and management of these genetic conditions in the Czech Roma community.
View Article and Find Full Text PDF

Background: The oculo-facio-cardio-dental syndrome (OFCD) is an ultra-rare multiple congenital anomaly. This report describes clinical findings emphasising dental phenotype in five, molecularly confirmed, female cases from two Czech families.

Case Presentation: Dental examinations were carried out.

View Article and Find Full Text PDF

We compare photoaligning properties of polymer layers fabricated from the same constituents: polymethyl-methacrylate (PMMA) and azo-dye Disperse Red 1 (DR1), either chemically attached to the PMMA main-chain, or physically mixed with it. Photoaligning properties depend on the preparation method drastically. Photoalignment was found to be far more efficient when PMMA is functionalized with DR1 compared to the case of physically mixing the constituents.

View Article and Find Full Text PDF

Neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), or systemic amyloidosis, are characterized by the specific protein transformation from the native state to stable insoluble deposits, e.g., amyloid plaques.

View Article and Find Full Text PDF

Abstract: Carbon fibers (CFs) decorated by CoP nanoparticles and carbon nanotubes were prepared via needle-less electrospinning technique. Formation of catalytically active CoP nanoparticles and growth of carbon nanotubes were monitored in open and closed sintering environment at different sintering exposure times. Higher porosity, important in the catalytic reaction for easier penetration of electrolyte into the CFs, was achieved by mixing two immiscible polymers with natrium dodecyl sulfate and subsequent heat treatment process.

View Article and Find Full Text PDF

Understanding the formation process and the spatial distribution of nanoparticle (NP) clusters on amyloid fibrils is an essential step for the development of NP-based methods to inhibit aggregation of amyloidal proteins or reverse the assembling trend of the proto-fibrillary complexes that prompts pathogenesis of neuro degeneration. For this, a detailed structural determination of the diverse hybrid assemblies that are forming is needed, which can be achieved by advanced X-ray scattering techniques. Using a combined solution small angle X-ray scattering (SAXS) and atomic force microscopy (AFM) approach, this study investigates the intrinsic trends of the interaction between lysozyme amyloid fibrils (LAFs) and FeO NPs before and after fibrillization at nanometer resolution.

View Article and Find Full Text PDF

We demonstrate experimentally that the anchoring of a nematic liquid crystal on a solid substrate together with the anchoring of the liquid crystal on a nanoparticle surface induces orientational self-assembly of anisometric nanoparticles in liquid crystal droplets. The observed phenomenon opens a novel route for fabrication of thin colloidal films with tailored properties.

View Article and Find Full Text PDF

Polychlorinated biphenyls are synthetic industrial organic substances. These persistent pollutants occur in nature causing high ecological risks and damage to human health. Magnetoferritin nanoparticles composed of apoferritin protein shell surrounding synthetically prepared iron-based nanoparticles seem to be a promising candidate for polychlorinated biphenyls elimination.

View Article and Find Full Text PDF

We present colloidal nanocomposites formed by incorporating magnetite Fe O nanoparticles (MNPs) with lysozyme amyloid fibrils (LAFs). Preparation of two types of solutions, with and without addition of salt, was carried out to elucidate the structure of MNPs-incorporated fibrillary nanocomposites and to study the effect of the presence of salt on the stability of the nanocomposites. The structural morphology of the LAFs and their interaction with MNPs were analyzed by atomic force microscopy and small-angle x-ray scattering measurements.

View Article and Find Full Text PDF