Publications by authors named "Batich C"

Research into mosquito-borne illnesses faces hurdles because feeding fresh animal blood to rear female mosquitoes presents logistical, economic, and safety challenges. In this study, a shelf-stable additive (spray-dried porcine blood; SDPB) hypothesized to supply accessible hemoglobin was evaluated within an alternative meal (AM) containing whey powder and PBS for rearing the yellow fever mosquito . LC-MS/MS proteomics, microbial assays, and particle reduction techniques confirmed and characterized the functionality of hemoglobin in SDPB, while engorgement, fecundity, egg viability, and meal stability bioassays assessed AM performance.

View Article and Find Full Text PDF

Mosquitoes can impact military operational readiness by transmission of disease-causing pathogens or through secondary effects, e.g., annoyance and bites.

View Article and Find Full Text PDF

A microscopic study of microplankton in two coastal lagoons in the Florida Keys coincidently, and unexpectedly, revealed the widespread presence of high concentrations of polystyrene microplastic particles. The polystyrene particles were first observed in the second year of a 2-year study of phytoplankton communities, with peak densities in the spring/summer of 2019 at all ten sampling sites in the two lagoons. Polystyrene particle densities reached levels up to 76,000 L.

View Article and Find Full Text PDF

The effect of pH changes on the chemical durability of dental glass-ceramic materials was evaluated using weight loss and ion release levels. The hypothesis that increased pH changes will exhibit greater corrosion was investigated. The ion concentration was analyzed using inductively coupled plasma atomic emission spectrometer (ICP).

View Article and Find Full Text PDF

The formation and characterization of positively surface charged TiN surfaces were investigated for improving dental implant survival. Surface nitrogen atoms of a traditional TiN implant were converted to a positive charge by a quaternization reaction which greatly increased the antibacterial efficiency. Ti, TiN, and quaternized TiN samples were incubated with human patient subgingival bacteria for 4 hours at 37°C in an anaerobic environment with an approximate 40% reduction in counts on the quaternized surface over traditional Ti and TiN.

View Article and Find Full Text PDF

Testing behavioral response to insecticidal volatiles requires modifications to the existing designs of olfactometers. To create a testing apparatus in which there is no chemical memory to confound tests, we detail the technical aspects of a new tool with design influences from other olfactometry tools. In addition, this new tool was used to evaluate a novel formulation of metofluthrin for use as an outdoor residual treatment.

View Article and Find Full Text PDF

Conjugation of latent growth factors to superparamagnetic iron oxide nanoparticles (SPIONs) is potentially useful for magnetically triggered release of bioactive macromolecules. Thus, the goal of this work was to trigger the release of active Transforming Growth-Factor Beta (TGF-β) via magnetic hyperthermia by binding SPIONs to the latent form of TGF-β, since heat has been shown to induce release of TGF-β from the latent complex. Commercially available SPIONS with high specific absorption rates (SAR) were hydrolyzed in 70% ethanol to create surface carboxylic acid conjugation sites for carbodiimide chemistry.

View Article and Find Full Text PDF

Mosquitoes continue to be a major threat to global health, and the ability to reliably monitor, catch, and kill mosquitoes via passive traps is of great importance. Global, low-cost, and easy-to-use outdoor devices are needed to augment existing efforts in mosquito control that combat the spread of disease, such as Zika. Thus, we have developed a modular, portable, non-powered (passive), self-contained, and field-deployable device suitable for releasing volatiles with a wide range of applications such as attracting, repelling, and killing mosquitoes.

View Article and Find Full Text PDF

Understanding short-range cues (e.g., host odorants, heat, moisture) of host-seeking female Aedes aegypti L.

View Article and Find Full Text PDF

Purpose: Multiuse eye drops must maintain sterility and typically accomplish this by added preservatives. However, preservatives often cause harmful side effects. A gauze barrier dressing ("BIOGUARD") recently cleared by the FDA has an immobilized poly diallyldimethylammonium chloride (p-DADMAC) coating and is an effective antimicrobial with minimal compound release into solution.

View Article and Find Full Text PDF

A rapid thermal desorption-gas chromatography-electron ionization-mass spectrometry (TD-GC-EI-MS) method for airborne transfluthrin detection is studied. Active air sampling of 9 L over 1 h at 23 °C through a Tenax®-loaded tube resulted in efficient capture of airborne transfluthrin. Subsequent thermal desorption was employed to achieve an LOD of 2.

View Article and Find Full Text PDF

Objective: To determine the ability of a polyacrylic acid-silicone radiolucent self-retaining gradual occlusion device (PAS-OD) to attenuate congenital extrahepatic portosystemic shunts (EHPSS) in dogs.

Study Design: Prospective clinical trial.

Animals: Six client-owned dogs with single, congenital EHPSS.

View Article and Find Full Text PDF

Background: A new post-myocardial infarction (MI) therapy is injection of high-water-content polymeric biomaterial gels (hydrogels) into damaged myocardium to modulate cardiac negative remodeling and preserve heart function.

Methods: We investigated the therapeutic potential of a novel gelatinized alginate hydrogel with a unique microstructure of uniform capillary-like channels (termed Capgel). Shortly (48h) after induced anterior MI, Sprague Dawley rats received intramyocardial injection of Capgel directly into the antero-septal wall at the infarct border zone (n=12) or no injection (n=10, controls).

View Article and Find Full Text PDF

OBJECTIVE To evaluate the closure rate and completeness of closure for a silicone-polyacrylic acid gradual venous occlusion device placed around an intra-abdominal vein to simulate gradual occlusion of an extrahepatic portosystemic shunt. ANIMALS 3 purpose-bred cats and 2 purpose-bred dogs. PROCEDURES The device was surgically placed around an external (cats) or internal (dogs) iliac vein.

View Article and Find Full Text PDF

Objective: To develop a device intended for gradual venous occlusion over 4 to 6 weeks.

Sample: Silicone tubing filled with various inorganic salt and polyacrylic acid (PAA) formulations and mounted within a polypropylene or polyether ether ketone (PEEK) outer ring.

Procedures: 15 polypropylene prototype rings were initially filled with 1 of 5 formulations and placed in PBSS.

View Article and Find Full Text PDF

Advances in organ regeneration have been facilitated by gentle decellularization protocols that maintain distinct tissue compartments, and thereby allow seeding of blood vessels with endothelial lineages separate from populations of the parenchyma with tissue-specific cells. We hypothesized that a reconstituted vasculature could serve as a novel platform for perfusing cells derived from a different organ: thus discordance of origin between the vascular and functional cells, leading to a hybrid repurposed organ. The need for a highly vascular bed is highlighted by tissue engineering approaches that involve transplantation of just cells, as attempted for insulin production to treat human diabetes.

View Article and Find Full Text PDF

Discussed in detail is the synthesis and primary structure characterization of two polymers aimed at advancing the treatment of pediatric osteosarcoma. These polymers are designed to systemically deliver radiometals specifically to osteosarcomas using the passive targeting mechanism of enhanced permeability and retention (the EPR effect). The approach begins with the synthesis of a polymer capable of binding radiometals, for which prior data show improved site-specific targeting of solid tumors.

View Article and Find Full Text PDF

Feraheme, is a recently FDA-cleared superparamagnetic iron oxide nanoparticle (SPION)-based MRI contrast agent that is also employed in the treatment of iron deficiency anemia. Feraheme nanoparticles have a hydrodynamic diameter of 30 nm and consist of iron oxide crystallites complexed with a low molecular weight, semi-synthetic carbohydrate. These features are attractive for other potential biomedical applications such as magnetic fluid hyperthermia (MFH), since the carboxylated polymer coating affords functionalization of the particle surface and the size allows for accumulation in highly vascularized tumors via the enhanced permeability and retention effect.

View Article and Find Full Text PDF

Aims: We sought to describe the response of the polymer surface of drug-eluting stents (DES) to delivery balloon expansion, including quantitation of any resulting detached microparticles.

Methods And Results: We expanded the US Food and Drug Administration (FDA)-approved first- and second-generation DES in a vacuum filtration system and used optical and scanning electron microscopy to image the polymer surface, filters and delivery balloons. DES were expanded under a range of conditions, from in vitro conditions used for FDA regulatory submissions to human in vivo conditions.

View Article and Find Full Text PDF

Despite remarkable effectiveness of reperfusion and drug therapies to reduce morbidity and mortality following myocardial infarction (MI), many patients have debilitating symptoms and impaired left ventricular (LV) function highlighting the need for improved post-MI therapies. A promising concept currently under investigation is intramyocardial injection of high-water content, polymeric biomaterial gels (e.g.

View Article and Find Full Text PDF

Infusate backflow or leak-back along the cannula track can occur during intraparenchymal infusions resulting in non-specific targeting of therapeutic agents. The occurrence of backflow depends on several variables including cannula radius, infusate flow rate, and tip location. In this study, polymer coatings that swell in situ were developed and tested with in vitro hydrogel experiments for backflow reduction.

View Article and Find Full Text PDF

Introduction: To address transplant organ shortage, a promising strategy is to decellularize kidneys in a manner that the scaffold retains signals for seeded pluripotent precursor cells to differentiate and recapitulate native structures: matrix-to-cell signaling followed by cell-cell and cell-matrix interactions, thereby remodeling and replacing the original matrix. This would reduce scaffold antigenicity and enable xeno-allografts.

Results: DAPI-labeled cells in arterial vessels and glomeruli were positive for both endothelial lineage markers, BsLB4 and VEGFR2.

View Article and Find Full Text PDF