The fidelity of replication, especially in the presence of DNA damage, is essential for the proper function of cells. Mutations that inactivate genes involved in DNA damage repair or bypass are enriched in several types of cancer cells. Thus, it is important to further our understanding of the mechanisms governing replication fidelity.
View Article and Find Full Text PDFDNA Damage Tolerance (DDT) mechanisms allow cells to bypass lesions in the DNA during replication. This allows the cells to progress normally through the cell cycle in the face of abnormalities in their DNA. PCNA, a homotrimeric sliding clamp complex, plays a central role in the coordination of various processes during DNA replication, including the choice of mechanism used during DNA damage bypass.
View Article and Find Full Text PDFSeveral DNA polymerases participate in DNA synthesis during genome replication and DNA repair. PCNA, a homotrimeric ring, acts as a processivity factor for DNA polymerases. PCNA also acts as a "landing pad" for proteins that interact with chromatin and DNA at the moving fork.
View Article and Find Full Text PDFFEMS Microbiol Rev
January 2021
What is the origin of mutations? In contrast to the naïve notion that mutations are unfortunate accidents, genetic research in microorganisms has demonstrated that most mutations are created by genetically encoded error-prone repair mechanisms. However, error-free repair pathways also exist, and it is still unclear how cells decide when to use one repair method or the other. Here, we summarize what is known about the DNA damage tolerance mechanisms (also known as post-replication repair) for perhaps the best-studied organism, the yeast Saccharomyces cerevisiae.
View Article and Find Full Text PDFDNA polymerases sometimes stall during DNA replication at sites where DNA is damaged, or upon encounter with proteins or secondary structures of DNA. When that happens, the polymerase clamp PCNA can become modified with a single ubiquitin moiety at lysine 164, opening DNA Damage Tolerance (DDT) mechanisms that either repair or bypass the lesions. An alternative repair mechanism is the salvage recombination (SR) pathway, which copies information from the sister chromatid.
View Article and Find Full Text PDFTelomeres are structures composed of simple DNA repeats and specific proteins that protect the eukaryotic chromosomal ends from degradation, and facilitate the replication of the genome. They are central to the maintenance of the genome integrity, and play important roles in the development of cancer and in the process of aging in humans. The yeast Saccharomyces cerevisiae has greatly contributed to our understanding of basic telomere biology.
View Article and Find Full Text PDFDuring DNA replication, stalling can occur when the replicative DNA polymerases encounter lesions or hard-to replicate regions. Under these circumstances, the processivity factor PCNA gets ubiquitylated at lysine 164, inducing the DNA damage tolerance (DDT) mechanisms that can bypass lesions encountered during DNA replication. PCNA can also be SUMOylated at the same residue or at lysine 127.
View Article and Find Full Text PDFProper DNA damage repair is one of the most vital and fundamental functions of every cell. Several different repair mechanisms exist to deal with various types of DNA damage, in various stages of the cell cycle and under different conditions. Homologous recombination is one of the most important repair mechanisms in all organisms.
View Article and Find Full Text PDFThe sliding clamp, PCNA, plays a central role in DNA replication and repair. In the moving replication fork, PCNA is present at the leading strand and at each of the Okazaki fragments that are formed on the lagging strand. PCNA enhances the processivity of the replicative polymerases and provides a landing platform for other proteins and enzymes.
View Article and Find Full Text PDFELG1 is a conserved gene with important roles in the maintenance of genome stability. Elg1's activity prevents gross chromosomal rearrangements, maintains proper telomere length regulation, helps repairing DNA damage created by a number of genotoxins and participates in sister chromatid cohesion. Elg1 is evolutionarily conserved, and its Fanconi Anemia-related mammalian ortholog (also known as ATAD5) is embryonic lethal when lost in mice and acts as a tumor suppressor in mice and humans.
View Article and Find Full Text PDFELG1 is a conserved gene uncovered in a number of genetic screens in yeast aimed at identifying factors important in the maintenance of genome stability. Elg1's activity prevents gross chromosomal rearrangements, maintains proper telomere length regulation, helps repairing DNA damage created by a number of genotoxins and participates in sister chromatid cohesion. Elg1 is evolutionarily conserved, and its mammalian ortholog (also known as ATAD5) is embryonic lethal when lost in mice, acts as a tumor suppressor in mice and humans, exhibits physical interactions with components of the human Fanconi Anemia pathway and may be responsible for some of the phenotypes associated with neurofibromatosis.
View Article and Find Full Text PDFElg1 and Srs2 are two proteins involved in maintaining genome stability in yeast. After DNA damage, the homotrimeric clamp PCNA, which provides stability and processivity to DNA polymerases and serves as a docking platform for DNA repair enzymes, undergoes modification by the ubiquitin-like molecule SUMO. PCNA SUMOylation helps recruit Srs2 and Elg1 to the replication fork.
View Article and Find Full Text PDFThe most dangerous insults to the genome's integrity are those that break both strands of the DNA. Double-strand breaks can be repaired by homologous recombination; in this conserved mechanism, a global genomic homology search finds sequences similar to those near the break, and uses them as a template for DNA synthesis and ligation. Chromosomes occupy restricted territories within the nucleus.
View Article and Find Full Text PDFFanconi anemia (FA) is a human syndrome characterized by genomic instability and increased incidence of cancer. FA is a genetically heterogeneous disease caused by mutations in at least 15 different genes; several of these genes are conserved in the yeast Saccharomyces cerevisiae. Elg1 is also a conserved protein that forms an RFC-like complex, which interacts with SUMOylated PCNA.
View Article and Find Full Text PDFPCNA is a homotrimeric ring with important roles in DNA replication and repair. PCNA is loaded and unloaded by the RFC complex, which is composed of five subunits (Rfc1-5). Three additional complexes that share with RFC the small subunits (Rfc2-5) and contain alternative large subunits were found in yeast and other eukaryotes.
View Article and Find Full Text PDFDNA double-strand breaks (DSBs) and other lesions occur frequently during cell growth and in meiosis. These are often repaired by homologous recombination (HR). HR may result in the formation of DNA structures called Holliday junctions (HJs), which need to be resolved to allow chromosome segregation.
View Article and Find Full Text PDFReplication-factor C (RFC) is a protein complex that loads the processivity clamp PCNA onto DNA. Elg1 is a conserved protein with homology to the largest subunit of RFC, but its function remained enigmatic. Here, we show that yeast Elg1 interacts physically and genetically with PCNA, in a manner that depends on PCNA modification, and exhibits preferential affinity for SUMOylated PCNA.
View Article and Find Full Text PDFDouble-strand breaks (DSBs) occur frequently during cell growth. Due to the presence of repeated sequences in the genome, repair of a single DSB can result in gene conversion, translocation, deletion or tandem duplication depending on the mechanism and the sequence chosen as partner for the recombinational repair. Here, we study how yeast cells repair a single, inducible DSB when there are several potential donors to choose from, in the same chromosome and elsewhere in the genome.
View Article and Find Full Text PDFMutations in the ELG1 gene of yeast lead to genomic instability, manifested in high levels of genetic recombination, chromosome loss, and gross chromosomal rearrangements. Elg1 shows similarity to the large subunit of the Replication Factor C clamp loader, and forms a RFC-like (RLC) complex in conjunction with the 4 small RFC subunits. Two additional RLCs exist in yeast: in one of them the large subunit is Ctf18, and in the other, Rad24.
View Article and Find Full Text PDFDNA double-strand breaks (DSBs) are dangerous lesions that can lead to genomic instability and cell death. Eukaryotic cells repair DSBs either by nonhomologous end-joining (NHEJ) or by homologous recombination. We investigated the ability of yeast cells (Saccharomyces cerevisiae) to repair a single, chromosomal DSB by recombination at different stages of the cell cycle.
View Article and Find Full Text PDFMany overlapping surveillance and repair mechanisms operate in eukaryotic cells to ensure the stability of the genome. We have screened to isolate yeast mutants exhibiting increased levels of recombination between repeated sequences. Here we characterize one of these mutants, elg1.
View Article and Find Full Text PDFRecombination plays a central role in the repair of broken chromosomes in all eukaryotes. We carried out a systematic study of mitotic recombination. Using several assays, we established the chronological sequence of events necessary to repair a single double-strand break.
View Article and Find Full Text PDF