Infectious diseases are one of the world's leading causes of morbidity. Their rapid spread emphasizes the need for accurate and fast diagnostic methods for large-scale screening. Here, we describe a robust method for the detection of pathogens based on microscale thermophoresis (MST).
View Article and Find Full Text PDFCopy number variations (CNV) are a major contributor to genome variability and have been linked to aging and other degradable phenotypes such as pregnancy physiology. To demonstrate how pregnancy can be used as a model of aging, we used CNVs from pregnant mice. Candidate CNVs were selected by applying case-control analysis in human centenarians compared with control groups.
View Article and Find Full Text PDFThe modern lifestyle requires less physical activity and skills during our daily routine, leading to multiple pathologies related to physical disabilities and energy accessibility. Thus, exploring the mechanisms underlying the metabolic regulation of exercise is crucial. Here, we characterized the effect of forced and voluntary endurance exercises on three key metabolic signaling pathways, sirtuins, AMPK, and mTOR, across several metabolic tissues in mice: brain, muscles, and liver.
View Article and Find Full Text PDFThe pro-longevity enzyme SIRT6 regulates various metabolic pathways. Gene expression analyses in SIRT6 heterozygotic mice identify significant decreases in PPARα signaling, known to regulate multiple metabolic pathways. SIRT6 binds PPARα and its response element within promoter regions and activates gene transcription.
View Article and Find Full Text PDFWhile average human life expectancy has increased dramatically in the last century, the maximum life span has only modestly increased. These observations prompted the notion that human life span might have reached its maximal natural limit of ~115 years. To evaluate this hypothesis, we conducted a systematic analysis of all-cause human mortality throughout the 20th century.
View Article and Find Full Text PDFMice overexpressing the longevity protein SIRT6 or deficient for the liver's most prevalent microRNA miR-122 display a similar set of phenotypes, including improved lipid profile and protection against damage linked to obesity. Here, we show that miR-122 and SIRT6 negatively regulate each other's expression. SIRT6 downregulates miR-122 by deacetylating H3K56 in the promoter region.
View Article and Find Full Text PDFSIRT6, a member of the mammalian sirtuins family, functions as a mono-ADP-ribosyl transferase and NAD(+)-dependent deacylase of both acetyl groups and long-chain fatty acyl groups. SIRT6 regulates diverse cellular functions such as transcription, genome stability, telomere integrity, DNA repair, inflammation and metabolic related diseases such as diabetes, obesity and cancer. In this review, we will discuss the implication of SIRT6 in the biology of cancer and the relevance to organism homeostasis and lifespan.
View Article and Find Full Text PDFPseudomonas aeruginosa antibiotic resistance has led to the search of natural compounds, which would competitively block its fucose>fructose/mannose-binding lectin (PA-IIL) that mediates its biofilm formation and adhesion to animal cells. Such compounds were found in human milk (HM) and avian egg whites. The present research has revealed that honey and royal jelly (RJ), which are assigned to protect beehive progeny and are applied for human infection therapy, match HM in PA-IIL blocking.
View Article and Find Full Text PDFPseudomonas aeruginosa produces a fucose-binding lectin (PA-IIL) which strongly binds to human cells. This lectin was shown to be highly sensitive to inhibition by fucose-bearing human milk glycoproteins. Since the glycans of these glycoproteins mimic human cell receptors, they may function as decoys in blocking lectin-dependent pathogen adhesion to the host cells.
View Article and Find Full Text PDFThe plant pathogen Ralstonia solanacearum produces two lectins, each with different affinity to fucose. We described previously the properties and sequence of the first lectin, RSL (subunit M(r) 9.9 kDa), which is related to fungal lectins (Sudakevitz, D.
View Article and Find Full Text PDFThe opportunistic human pathogen Pseudomonas aeruginosa produces a D-galactophilic (PA-IL) lectin and another lectin (PA-IIL) that binds L-fucose > D-arabinose > D-mannose in close association with its host-attacking factors. These lectins contribute to the virulence of P. aeruginosa by their involvement in the production, adhesion, and pathogenic effects of its biofilm on host cells.
View Article and Find Full Text PDFAvian egg white glycoproteins which differ in structure and carbohydrate composition, vary in their interactions with diverse lectins. Generally, wheat germ agglutinin (WGA) and concanavalin A (Con A) are used for the identification and separation of those of the chicken. In the present study, interactions of a battery of lectins, including: the above two, several galactophilic lectins (from Aplysia gonad (AGL), Erythrina corallodendron (ECorL), peanut (PNA) and Pseudomonas aeruginosa (PA-IL)), and fucose-binding lectins (from Ulex europaeus (UEA-I), Ulva lactuca (ULL) and P.
View Article and Find Full Text PDF