The continued proliferation of malaria throughout temperate and tropical regions of the world has promoted a push for more efficacious treatments to combat the disease. Unfortunately, more recent remedies such as artemisinin combination therapies have been rendered less effective due to developing parasite resistance, and new drugs are required that target the parasite in the liver to support the disease elimination efforts. Research was initiated to revisit antimalarials developed in the 1940s and 1960s that were deemed unsuitable for use as therapeutic agents as a result of poor understanding of both physicochemical properties and parasitology.
View Article and Find Full Text PDFNovel synthetic endoperoxides are being evaluated as new components of artemisinin combination therapies (ACTs) to treat artemisinin-resistant Plasmodium falciparum malaria. We conducted blinded ex vivo activity testing of fully synthetic (OZ78 and OZ277) and semisynthetic (artemisone, artemiside, artesunate, and dihydroartemisinin) endoperoxides in the histidine-rich protein 2 enzyme-linked immunosorbent assay against 200 P. falciparum isolates from areas of artemisinin-resistant malaria in western and northern Cambodia in 2009 and 2010.
View Article and Find Full Text PDFThe historical antimalarial compound endochin served as a structural lead for optimization. Endochin-like quinolones (ELQ) were prepared by a novel chemical route and assessed for in vitro activity against multidrug resistant strains of Plasmodium falciparum and against malaria infections in mice. Here we describe the pathway to discovery of a potent class of orally active antimalarial 4(1H)-quinolone-3-diarylethers.
View Article and Find Full Text PDFThe objective of this work was to characterize the in vitro (Plasmodium falciparum) and in vivo (Plasmodium berghei) activity profile of the recently discovered lead compound SSJ-183. The molecule showed in vitro a fast and strong inhibitory effect on growth of all P. falciparum blood stages, with a tendency to a more pronounced stage-specific action on ring forms at low concentrations.
View Article and Find Full Text PDFThe goal for developing new antimalarial drugs is to find a molecule that can target multiple stages of the parasite's life cycle, thus impacting prevention, treatment, and transmission of the disease. The 4(1H)-quinolone-3-diarylethers are selective potent inhibitors of the parasite's mitochondrial cytochrome bc1 complex. These compounds are highly active against the human malaria parasites Plasmodium falciparum and Plasmodium vivax.
View Article and Find Full Text PDFAntimicrob Agents Chemother
February 2012
With the emergence of Plasmodium falciparum infections exhibiting increased parasite clearance times in response to treatment with artemisinin-based combination therapies, the need for new therapeutic agents is urgent. Solithromycin, a potent new fluoroketolide currently in development, has been shown to be an effective, broad-spectrum antimicrobial agent. Malarial parasites possess an unusual organelle, termed the apicoplast, which carries a cryptic genome of prokaryotic origin that encodes its own translation and transcription machinery.
View Article and Find Full Text PDFA library of diamine quinoline methanols were designed based on the mefloquine scaffold. The systematic variation of the 4-position amino alcohol side chain led to analogues that maintained potency while reducing accumulation in the central nervous system (CNS). Although the mechanism of action remains elusive, these data indicate that the 4-position side chain is critical for activity and that potency (as measured by IC(90)) does not correlate with accumulation in the CNS.
View Article and Find Full Text PDFDrug therapy is the mainstay of antimalarial therapy, yet current drugs are threatened by the development of resistance. In an effort to identify new potential antimalarials, we have undertaken a lead optimization program around our previously identified triazolopyrimidine-based series of Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors. The X-ray structure of PfDHODH was used to inform the medicinal chemistry program allowing the identification of a potent and selective inhibitor (DSM265) that acts through DHODH inhibition to kill both sensitive and drug resistant strains of the parasite.
View Article and Find Full Text PDFBackground: The clinical use of mefloquine (MQ) has declined due to dose-related neurological events. Next generation quinoline methanols (NGQMs) that do not accumulate in the central nervous system (CNS) to the same extent may have utility. In this study, CNS levels of NGQMs relative to MQ were measured and an early lead chemotype was identified for further optimization.
View Article and Find Full Text PDFMalaria is one of the leading causes of severe infectious disease worldwide; yet, our ability to maintain effective therapy to combat the illness is continually challenged by the emergence of drug resistance. We previously reported identification of a new class of triazolopyrimidine-based Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors with antimalarial activity, leading to the discovery of a new lead series and novel target for drug development. Active compounds from the series contained a triazolopyrimidine ring attached to an aromatic group through a bridging nitrogen atom.
View Article and Find Full Text PDFAntimicrob Agents Chemother
June 2011
This study characterizes aminoindole molecules that are analogs of Genz-644442. Genz-644442 was identified as a hit in a screen of ~70,000 compounds in the Broad Institute's small-molecule library and the ICCB-L compound collection at Harvard Medical School. Genz-644442 is a potent inhibitor of Plasmodium falciparum in vitro (50% inhibitory concentrations [IC₅₀s], 200 to 285 nM) and inhibits P.
View Article and Find Full Text PDFOzonide OZ439 is a synthetic peroxide antimalarial drug candidate designed to provide a single-dose oral cure in humans. OZ439 has successfully completed Phase I clinical trials, where it was shown to be safe at doses up to 1,600 mg and is currently undergoing Phase IIa trials in malaria patients. Herein, we describe the discovery of OZ439 and the exceptional antimalarial and pharmacokinetic properties that led to its selection as a clinical drug development candidate.
View Article and Find Full Text PDFDespite increasing efforts and support for anti-malarial drug R&D, globally anti-malarial drug discovery and development remains largely uncoordinated and fragmented. The current window of opportunity for large scale funding of R&D into malaria is likely to narrow in the coming decade due to a contraction in available resources caused by the current economic difficulties and new priorities (e.g.
View Article and Find Full Text PDFMalaria caused by Plasmodium falciparum is a disease that is responsible for 880,000 deaths per year worldwide. Vaccine development has proved difficult and resistance has emerged for most antimalarial drugs. To discover new antimalarial chemotypes, we have used a phenotypic forward chemical genetic approach to assay 309,474 chemicals.
View Article and Find Full Text PDFTo counter the global threat caused by Plasmodium falciparum malaria, new drugs and vaccines are urgently needed. However, there are no practical animal models because P. falciparum infects human erythrocytes almost exclusively.
View Article and Find Full Text PDFThe Medicines for Malaria Venture (MMV) is committed to discovering, developing and delivering new drugs for malaria. Founded in 1999 as a nonprofit organization bringing private sector management methods to bear on a global public health problem, MMV is today recognized as a leader among the public-private partnerships working on diseases for the developing world. Together with its many partners, MMV manages the world's largest malaria research and development portfolio, covering the innovation spectrum from basic drug discovery to late-stage development.
View Article and Find Full Text PDFApoptosis, or programmed cell death, is an active metabolic response to physiological signals or exposure to cytotoxic agents. Recent evidence has shown that the cell death response can be modified by agents presumed to be unrelated to the initial signal, but capable of interfering with the molecular mechanisms of the apoptotic pathway progression. Here we show the results of investigations on the use of a phospholipid-based pharmaceutical preparation for suppression of myocardial damage.
View Article and Find Full Text PDFPrevious studies have shown that extracts from soy possess potent antiapoptotic activity in in vitro and in vivo models. We recently reported that this antiapoptotic activity can be attributed to the presence of specific phospholipids. In this study, a conventional preparation of the soy-derived Bowman-Birk inhibitor (BBI) was tested for antiapoptotic activity in a C3H/10T1/2 cell serum deprivation assay.
View Article and Find Full Text PDFThe ability of a previously described soy-derived antiapoptotic fraction (SDAAF), a soy water extract (Lexirin), and raw soy flour to inhibit methotrexate (MTX)-induced gastrointestinal damage was evaluated by histological examination of duodenal/jejunal sections from MTX-treated rats. Male Sprague-Dawley rats were fed diets containing casein as a sole protein source or diets supplemented with fractions isolated from soy (SDAAF or Lexirin) before and after MTX treatment. The soy fractions were also shown to inhibit serum deprivation-induced programmed cell death (apoptosis) in mouse embryonic C3H10T1/2 cells.
View Article and Find Full Text PDFAm J Trop Med Hyg
November 1997
A yeast (Saccharomyces cerevisiae) expression system has been adapted to produce reagent quantities of a major Onchocerca antigen, Ov33. Using a pool of monoclonal antibodies produced against third-stage larvae, a cDNA library constructed from adult O. volvulus worms was screened.
View Article and Find Full Text PDFRecent work has suggested that important B- and T-cell epitopes on the circumsporozoite protein (CSP) of Plasmodium vivax lie external to the major repeat regions of the protein. We have studied two naturally exposed human populations (Caucasian and Papua New Guineans) and determined the antibody response to yeast-derived recombinant CSPs, overlapping synthetic peptides spanning amino acids 76 348 of the Belem P. vivax CSP and overlapping peptides representing the variant repeats of the VK247 strain of P.
View Article and Find Full Text PDFBackground: Apoptosis (programmed cell death) occurs as a consequence of global organ ischemia during isolation and storage prior to transplantation. If apoptosis is inhibited during ischemia, organ preservation should be improved, and the length of time for permissible storage may be increased. The objective of this study was to test the effect of a newly developed antiapoptotic compound, LXR-015, during extended hypothermic liver preservation.
View Article and Find Full Text PDFThe ability of a soy-derived antiapoptotic fraction to inhibit methotrexate-induced gastrointestinal toxicity was examined. Male Sprague-Dawley rats treated with methotrexate were fed diets containing casein as a sole protein source or diets supplemented with a protein-phospholipid fraction isolated from soy flour. This soy fraction has also been shown to inhibit serum deprivation-induced programmed cell death (apoptosis) in the mouse embryonic C3H10T1/2 cell.
View Article and Find Full Text PDFLysophosphatidic acid (1-acyl-2-lyso-snglycero-3-phosphate, LPA) is a multifunctional lipid mediator found in a variety of organisms that span the phylogenetic tree from humans to plants. Although its physiological function is not clearly understood, LPA is a potent regulator of mammalian cell proliferation; it is one of the major mitogens found in blood serum. In Xenopus laevis oocytes, LPA elicits oscillatory Cl- currents.
View Article and Find Full Text PDFA major antigen recognized by human sera in Onchocerca volvulus infections is a parasite eggshell protein. The cDNA clone for this antigen was isolated from a lambda gt11 O. volvulus cDNA library using antisera from patients with high microfilarial counts.
View Article and Find Full Text PDF