ACS Appl Mater Interfaces
March 2024
Natural compounds like pterostilbene (PTE) have gained recognition for their various biological activities and potential health benefits. However, challenges related to bioavailability and limited clinical efficacy have prompted efforts to strengthen their therapeutic potential. To meet these challenges, we herein rationally designed and successfully synthesized a pharmaceutical phosphoramidite that allows for the programmable incorporation of PTE into oligonucleotides.
View Article and Find Full Text PDFIn the present paper, we synthesized and characterized four N-donor polypyridyl copper(II) complexes (C1-C4); [Cu(mono-CN-PIP)] (C1), [Cu(tri-OMe-PIP)] (C2), [Cu(di-CF-PIP)] (C3) and [Cu(DPPZ)] (C4). The (Calf-Thymus) CT-DNA binding studies depicted that the complexes could interact with DNA via intercalative mode. All the complexes, particularly C3 and C4 attenuated the proliferation as well as migration of various cancer cells, indicating their anti-cancer and anti-metastatic activity.
View Article and Find Full Text PDFA series of four new mononuclear copper(II) polypyridyl complexes (1-4) have been designed, developed, and thoroughly characterized by several physicochemical techniques. The CT-DNA binding properties of 1-4 have been investigated by absorption, emission spectroscopy, and viscosity measurements. All the complexes especially 1 and 4 exhibit cytotoxicity toward several cancer cell lines, suggesting their anticancer properties as observed by several in vitro assays.
View Article and Find Full Text PDFPropargylamines are synthesized via metal-free activation of the C-halogen bond of dihalomethanes and the C-H bond of terminal alkynes in a three-component coupling without catalyst or additional base and under mild reaction conditions. The dihalomethanes are used both as solvents as well as precursors for the methylene fragment (C1) in the final product. The scope of the reaction and the influence of various reaction variables has been investigated.
View Article and Find Full Text PDF