To identify host factors involved in Salmonella replication, SILAC-based quantitative proteomics was used to investigate the interactions of Salmonella typhimurium with the secretory pathway in human epithelial cells. Protein profiles of Golgi-enriched fractions isolated from S. typhimurium-infected cells were compared with those of mock-infected cells, revealing significant depletion or enrichment of 105 proteins.
View Article and Find Full Text PDFBias field reduction is a common problem in medical imaging. A bias field usually manifests itself as a smooth intensity variation across the image. The resulting image inhomogeneity is a severe problem for posterior image processing and analysis techniques such as registration or segmentation.
View Article and Find Full Text PDFIn this study, we applied a quantitative proteomic approach, based on SILAC, to investigate the interactions of coronaviruses with the secretory pathway of the host cell, with the aim to identify host factors involved in coronavirus replication. Comparison of the protein profiles of Golgi-enriched fractions of cells that were either mock infected or infected with mouse hepatitis virus revealed the significant depletion or enrichment of 116 proteins. Although ribosomal/nucleic acid binding proteins were enriched in the Golgi-fractions of mouse hepatitis virus-infected cells, proteins annotated to localize to several organelles of the secretory pathway were overrepresented among the proteins that were depleted from these fractions upon infection.
View Article and Find Full Text PDFLipids were long believed to have a structural role in biomembranes and a role in energy storage utilizing cellular lipid droplets and plasma lipoproteins. Research over the last decades has identified an additional role of lipids in cellular signaling, membrane microdomain organization and dynamics, and membrane trafficking. These properties make lipids an attractive target for pathogens to modulate host cell processes in order to allow their survival and replication.
View Article and Find Full Text PDFExpert Opin Biol Ther
April 2008
Background: Drug-resistant pathogens are an increasing threat, particularly for hospitalised patients. In search of a new approach in pathogen targeting, we developed bifunctional proteins that combine broad spectrum pathogen recognition with efficient targeting to phagocytes. Pathogen recognition is provided by a recombinant fragment of surfactant protein D (rfSP-D) while targeting to phagocytic cells is accomplished by coupling rfSP-D to F(ab') fragments directed against Fcalpha receptor I (FcalphaRI) or Fcgamma receptor I (FcgammaRI).
View Article and Find Full Text PDFOne of the key functions of mammalian pulmonary surfactant is the reduction of surface tension to minimal values. To fulfill this function it is expected to become enriched in dipalmitoylphosphatidylcholine either on its way from the alveolar type II pneumocytes to the air/water interface of the lung or within the surface film during compression and expansion of the alveoli during the breathing cycle. One protein that may play a major role in this enrichment process is the surfactant protein B.
View Article and Find Full Text PDFWe recently showed that a chimeric protein, consisting of a recombinant fragment of human surfactant protein D (rfSP-D) coupled to a Fab' fragment directed against the human Fcalpha receptor (CD89), effectively targets pathogens recognized by SP-D to human neutrophils. The present study evaluates the effectiveness of chimeric rfSP-D/anti-Fc receptor proteins targeting Escherichia coli to CD89 or to the Fcgamma receptor I (CD64) on monocytes. Both chimeric rfSP-D/anti-Fc receptor proteins increased internalization of E.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
October 2005
Oxidants and neutrophils contribute to lung injury during influenza A virus (IAV) infection. Surfactant protein (SP)-D plays a pivotal role in restricting IAV replication and inflammation in the first several days after infection. Despite its potent anti-inflammatory effects in vivo, preincubation of IAV with SP-D in vitro strongly increases neutrophil respiratory burst responses to the virus.
View Article and Find Full Text PDFBackground: There is evidence that surfactant protein (SP)-D is important in the innate, as well as in the adaptive pulmonary immune response. Serum concentrations of SP-D have been proposed as parameter of the integrity of the blood-airspace barrier in interstitial lung diseases. We hypothesized that serum SP-D concentrations are affected in allergic patients and correlate with changes in allergic airway inflammation.
View Article and Find Full Text PDFPulmonary surfactant protein (SP)-D is an important component of the innate immune system of the lung, which is thought to function by binding to specific carbohydrates on the surface of viruses and unicellular pathogens. SP-D has been shown to have a relatively high affinity for the monosaccharides mannose, glucose, and fucose. However, there is limited information on SP-D binding to complex carbohydrate structures, and binding of SP-D to fucose in the context of an oligosaccharide has not yet been investigated.
View Article and Find Full Text PDFTargeting of specific pathogens to FcRs on immune effector cells by using bispecific Abs was reported to result in effective killing of the pathogens, both in vitro and in vivo. Instead of targeting a specific pathogen to an FcR, we assessed whether a broad spectrum of pathogens can be targeted to an FcR using surfactant protein D (SP-D). SP-D is a collectin that binds a great variety of pathogens via its carbohydrate recognition domain.
View Article and Find Full Text PDFCollectins are a family of collagenous calcium-dependent defense lectins in animals. Their polypeptide chains consist of four regions: a cysteine-rich N-terminal domain, a collagen-like region, an alpha-helical coiled-coil neck domain and a C-terminal lectin or carbohydrate-recognition domain. These polypeptide chains form trimers that may assemble into larger oligomers.
View Article and Find Full Text PDFCryptococcus neoformans is an opportunistic pathogen invading the immunocompromised host. Infection starts with the inhalation of acapsular or sparsely encapsulated cells, after which capsule synthesis is initiated. The capsule is the main virulence factor of this yeast-like fungus.
View Article and Find Full Text PDFPigs can be infected with both human and avian influenza A virus (IAV) strains and are therefore considered to be important intermediates in the emergence of new IAV strains due to mixing of viral genes derived from human, avian, or porcine influenza viruses. These reassortant strains may have potential to cause pandemic influenza outbreaks in humans. The innate immune response against IAV plays a significant role in containment of IAV in the airways.
View Article and Find Full Text PDFRab3D is a small GTP-binding protein associated with secretory vesicles in various exocrine and endocrine cells, where it has been implicated in regulated exocytosis. Data obtained previously in pancreas have suggested that rab3D is involved in the coating of secretory granules with filamentous actin. In the present study we employed Western blot analysis, immunofluorescence, and immunoelectron microscopy to examine the distribution of rab3D in rat lung.
View Article and Find Full Text PDFInfluenza A virus (IAV) infections are a major cause of respiratory disease of humans and animals. Pigs can serve as important intermediate hosts for transmission of avian IAV strains to humans, and for the generation of reassortant strains; this may result in the appearance of new pandemic IAV strains in humans. We have studied the role of the porcine lung collectins surfactant proteins D and A (pSP-D and pSP-A), two important components of the innate immune response against IAV.
View Article and Find Full Text PDFSurfactant protein C (SP-C) is a small lipopeptide of which the main part consists of a typical valyl-rich transmembrane domain. The protein is expressed as a propeptide (proSP-C) which is processed and sorted via the regulated secretory pathway to the lamellar body, where mature SP-C is stored before secretion into the alveolar space. In this study we investigated the identity of the compartment to which proSP-C is sorted in cells that do not have a regulated secretory pathway, such as CHO cells.
View Article and Find Full Text PDFPulmonary surfactant forms a monolayer of lipids and proteins at the alveolar air/liquid interface. Although cholesterol is a natural component of surfactant, its function in surface dynamics is unclear. To further elucidate the role of cholesterol in surfactant, we used a captive bubble surfactometer (CBS) to measure surface activity of spread films containing dipalmitoylphosphatidylcholine/1-palmitoyl-2-oleoylphosphatidylcholine/1-palmitoyl-2-oleoylphosphatidylglycerol (DPPC/POPC/POPG, 50/30/20 molar percentages), surfactant protein B (SP-B, 0.
View Article and Find Full Text PDFBiochim Biophys Acta
August 2002
Pulmonary surfactant, a mixture of lipids and proteins, reduces the surface tension at the air-water interface of the lung alveoli by forming a surface active film. This way, it prevents alveoli from collapsing and facilitates the work of breathing. Surfactant protein C (SP-C) plays an important role in this surfactant function.
View Article and Find Full Text PDFSurfactant protein D (SP-D) belongs to a subgroup of mammalian collagenous Ca(2+)-dependent lectins known as the collectins. It is thought to play a significant role in the innate immune response against microorganisms within the lungs and at other mucosal surfaces. This report documents the isolation and characterization of SP-D purified from porcine lung lavage using mannan affinity chromatography and gel filtration.
View Article and Find Full Text PDFSurfactant protein C (SP-C) is synthesized by type II pneumocytes as a 21-kD propeptide (proSP-C) which is proteolytically processed to a 4.2-kD dipalmitoylated protein. To characterize the processing of proSP-C and the role of the cysteine protease cathepsin H, we studied the localization of proSP-C and cathepsin H in human as well as proSP-C in rat lungs, the enzymatic cathepsin H activity in isolated rat lamellar bodies, and the cleavage of human proSP-C by purified cathepsin H.
View Article and Find Full Text PDFThe determinants for the formation of multilayers upon compression of surfactant monolayers were investigated by compressing films, beyond the squeeze-out plateau, to a surface tension of 22 millinewtons/m. Atomic force microscopy was used to visualize the topography of lipid films containing varying amounts of native surfactant protein B (SP-B). These films were compared with films containing synthetic peptides based on the N terminus of human SP-B: monomeric mSP-B-(1-25) or dimeric dSP-B-(1-25).
View Article and Find Full Text PDFBackground: The function of pulmonary surfactant is affected by lung transplantation, contributing to impaired lung transplant function. A decreased amount of surfactant protein-A (SP-A) after reperfusion is believed to contribute to the impaired surfactant function. Surfactant treatment has been shown to improve lung transplant function, but the effect is variable.
View Article and Find Full Text PDFPulmonary surfactant protein C (SP-C) propeptide (proSP-C) is a type II transmembrane protein that is palmitoylated on two cysteines adjacent to its transmembrane domain. To study the structural requirements for palmitoylation of proSP-C, His-tagged human proSP-C and mutant forms were expressed in Chinese hamster ovary cells and analysed by metabolic labelling with [3H]palmitate. Mutations were made in the amino acid sequence representing mature SP-C, as deletion of the N- and C-terminal propeptide parts showed that this sequence by itself could already be palmitoylated.
View Article and Find Full Text PDFThe surfactant protein C precursor (proSP-C) is palmitoylated on two cysteines adjacent to its transmembrane domain. We showed previously that palmitoylation of proSP-C occurs in a postendoplasmic reticulum compartment and is not affected by the Golgi-disturbing agent brefeldin A (BFA). In contrast, the investigations presented here showed that BFA almost completely abolished palmitoylation of proSP-C mutants that contained alterations in the region between the palmitoylated cysteines and the transmembrane domain, including a Pro 30 to Leu mutant associated with interstitial lung disease.
View Article and Find Full Text PDF