Hypothesis: Synthetic micro/nanomotors are gaining extensive attention for various biomedical applications (especially in drug delivery) due to their ability to mimic the motion of biological micro/nanoscale swimmers. The feasibility of these applications relies on tight control of propulsion speed, direction, and type of motion (translation, circular, etc.) along with the exerted self-propulsive force.
View Article and Find Full Text PDFMonitoring the temperature distribution within a local environment at the micro and nanoscale is vital as many processes are solely thermal. Various thermometric techniques have been explored in the community, and out of these, fluorescent nano/micro particle-based mechanisms are accepted widely (fluorescence intensity ratio (FIR) techniques, where the ratio of populations in two consecutive energy levels is compared with Boltzmann distribution). We describe a new technique to account for the temperature rise near an illuminated upconverting particle (UCP) using wavefront imaging, which is more sensitive than the conventional thermometric techniques on the microscale.
View Article and Find Full Text PDFA rigid body can have six degrees of freedom, of which three are with rotational origin. In the nomenclature of the airlines, the in-plane degree of rotational freedom can be called yaw while the first out-of-plane degree of freedom can be called pitch with the second one being called roll. Among these, only the yaw sense has been studied extensively in the optical tweezers literature, while the pitch rotation is starting to be explored.
View Article and Find Full Text PDFIn recent years, there has been a growing interest in studying the trajectories of microparticles inside living cells. Among other things, such studies are useful in understanding the spatio-temporal properties of a cell. In this work, we study the stochastic trajectories of a passive microparticle inside a cell using experiments and theory.
View Article and Find Full Text PDFHematite particles, which exhibit a high magnetic moment, are used to apply large forces on physical and biological systems under magnetic fields to investigate various phenomena, such as those of rheology and micromanipulation. However, the magnetic confinement of these particles requires complicated field configurations. On the other hand, laser-assisted optical confinement of single hematite particles results in thermophoresis and subsequent ejection of the particle from the laser spot.
View Article and Find Full Text PDFIn recent years, there has been a growing interest in controlling the motion of microparticles inside and outside a focused laser beam. A hydro-thermophoretic trap was recently reported [Nalupurackal ., Soft Matter , 6825 (2022)], which can trap and manipulate microparticles and living cells outside a laser beam.
View Article and Find Full Text PDFUpconverting particles like Yb and Er-doped NaYF are known to heat up after illumination with light at pump wavelength due to inefficient upconversion processes. Here we show that NaYF particles which have been co-doped not only with Yb and Er but also Fe improves the photothermal conversion efficiency. In addition, we show for the first time that alternating magnetic fields also heat up the ferromagnetic particles.
View Article and Find Full Text PDFParticles can be assembled at the air-water interface due to optically induced local heating. This induces convection currents in the water which brings particles to the surface. We improve the technique by employing an upconverting particle (UCP), which, when illuminated with 975 nm light, not only emits visible emission but also generates heat owing to the poor efficiency of the upconversion process.
View Article and Find Full Text PDFA colloidal particle placed inside the cell cytoplasm is enmeshed within a network of cytoskeletal fibres immersed in the cytosolic fluid. The translational mode is believed to yield different rheological parameters than the rotational mode, given that these modes stretch the fibers differently. We compare the parameters for Michigan Cancer Foundation-7 (MCF-7) cells in this manuscript and find that the results are well comparable to each other.
View Article and Find Full Text PDFTumor-associated collagen signature-3 (TACS-3) is a prognostic indicator for breast cancer survival. It is characterized by highly organized, parallel bundles of collagen fibers oriented perpendicular to the tumor boundary, serving as directional, confining channels for cancer cell invasion. Here we design a TACS-3-mimetic anisotropic, confined collagen I matrix and examine the relation between anisotropy of matrix, directed cellular migration, and anisotropy of cell membrane-the first direct contact between TACS-3 and cell-using Michigan Cancer Foundation-7 (MCF-7) cells as cancer-model.
View Article and Find Full Text PDFOptical tweezers have revolutionised micromanipulation from physics and biology to material science. However, the high laser power involved in optical trapping can damage biological samples. In this context, indirect trapping of microparticles and objects using fluid flow fields has assumed great importance.
View Article and Find Full Text PDFTypically a rigid body can have three degrees of rotational freedom. Among these, there can be two types of out-of-plane rotational modes, called the pitch and the roll. The pitch motion is typically to turn the particle along an axis orthogonal to the axis of symmetry.
View Article and Find Full Text PDFMechanical properties of particle laden interfaces is crucial for various applications. For water droplets containing soft microgel particles, passive microrheology studies have revealed that the dynamically varying surface area of the evaporating drop results in a viscous to viscoelastic transition along the plane of the interface. However, the behaviour of the medium orthogonal to the interface has been elusive to study using passive microrheology techniques.
View Article and Find Full Text PDF3D Pitch (out-of-plane) rotational motion has been generated in spherical particles by maneuvering the laser spots of holographic optical tweezers. However, since the spherical particles, which are required to minimise drag are perfectly isotropic, a controllable torque cannot be applied with it. It remains free to spin about any axis even after moving the tweezers beams.
View Article and Find Full Text PDFThe multifunctional upconversion nanoparticles (UCNPs) are fascinating tool for biological applications. In the present work, photon upconverting NaGdF:Yb,Er and Ag nanoparticles decorated NaGdF:Yb,Er (NaGdF:Yb,Er@Ag) nanoparticles were prepared using a simple polyol process. Rietveld refinement was performed for detailed crystal structural and phase fraction analysis.
View Article and Find Full Text PDFConventionally, the work of adhesion at the nanoscale is estimated using an atomic force microscope with a tip of the size of 10 nm. It is pressed into a surface with nano-Newton forces and then retracted to ascertain when the tip breaks away from the surface. Thus this ensures "hard probing" of a surface.
View Article and Find Full Text PDFCardiovascular and cancer illnesses often co-exist, share pathological pathways, and complicate therapy. In the context of the potential oncological role of cardiovascular-antihypertensive drugs (AHD), here we examine the role of calcium-channel blocking drugs on mechanics of extravasating cancer cells, choosing two clinically-approved calcium-channel blockers (CCB): Verapamil-hydrochloride and Nifedipine, as model AHD to simultaneously target cancer cells (MCF7 and or MDA231) and an underlying monolayer of endothelial cells (HUVEC). First, live-cell microscopy shows that exposure to Nifedipine increases the spreading-area, migration-distance, and frequency of transmigration of MCF-7 cells through the HUVEC monolayer, whereas Verapamil has the opposite effect.
View Article and Find Full Text PDFWe employ a single optically trapped upconverting nanoparticle (UCNP) of NaYF4:Yb,Er of diameter about 100 nm as a subdiffractive source to perform absorption spectroscopy. The experimentally expected mode volume of 100 nm of the backscatter profile of the nanoparticle matches well with a numerical simulation of the dominant backscattering modes to confirm our assertion of achieving a source dimension considerably lower than the diffraction limit set by the excitation wavelength of 975 nm for the UCNP. We perform absorption spectroscopy of several diverse entities such as the dye Rhodamine B in water, a thin gold film of thickness 30 nm, and crystalline soft oxometalates micro-patterned on a glass substrate using the UCNP as a source.
View Article and Find Full Text PDFA microbubble nucleated due to the absorption of a tightly focused laser at the interface of a liquid-solid substrate enables directed and irreversible self-assembly of mesoscopic particles dispersed in the liquid at the bubble base. This phenomenon has facilitated a new microlithography technique which has grown rapidly over the past decade and can now reliably pattern a vast range of soft materials and colloids, ranging from polymers to metals to proteins. In this review, we discuss the science behind this technology and the present state-of-the-art.
View Article and Find Full Text PDF3D pitch rotation of microparticles and cells assumes importance in a wide variety of applications in biology, physics, chemistry and medicine. Applications such as cell imaging and injection benefit from pitch-rotational manipulation. Generation of such motion in single beam optical tweezers has remained elusive due to the complexities of generating high enough ellipticity perpendicular to the direction of propagation.
View Article and Find Full Text PDFNormal thermal fluctuations of the cell membrane have been studied extensively using high resolution microscopy and focused light, particularly at the peripheral regions of a cell. We use a single probe particle attached non-specifically to the cell-membrane to determine that the power spectral density is proportional to (frequency)-5/3 in the range of 5 Hz to 1 kHz. We also use a new technique to simultaneously ascertain the slope fluctuations of the membrane by relying upon the determination of pitch motion of the birefringent probe particle trapped in linearly polarized optical tweezers.
View Article and Find Full Text PDFMeasurement of the viscoelastic properties of a cell using microscopic tracer particles has been complicated given that the medium viscosity is dependent upon the size of the measurement probe leading to reliability issues. Further, a technique for direct calibration of optically trapped particles in vivo has been elusive due to the frequency dependence and spatial inhomogeneity of the cytoplasmic viscosity, and the requirement of accurate knowledge of the medium refractive index. Here, we employ a recent extension of Jeffery's model of viscoelasticity in the microscopic domain to fit the passive motional power spectra of micrometer-sized optically trapped particles embedded in a viscoelastic medium.
View Article and Find Full Text PDFEvaporating sessile droplets have been known to exhibit oscillations on the air-liquid interface. These are generally over millimeter scales. Using a novel approach, we are able to measure surface height changes of 500 nm amplitude using optical trapping of a set of microscopic particles at the interface, particularly when the vertical thickness of the droplet reduces to less than 50 m.
View Article and Find Full Text PDF