Publications by authors named "Basudeb Bhattacharyya"

Article Synopsis
  • Pathological mutations in the Trk-fused gene (TFG) are linked to neurodegenerative diseases, particularly hereditary spastic paraplegia (HSP), causing lower limb issues.* -
  • Researchers used X-ray crystallography and cryo-electron microscopy to reveal how TFG forms octameric ring complexes, crucial for its function.* -
  • Mutations from HSP patients disrupt the stability of these complexes, leading to neurodegenerative effects, but different mutations have varying impacts, indicating multiple mechanisms of disease progression.*
View Article and Find Full Text PDF

Fumarase C (FumC) catalyzes the reversible conversion of fumarate to S-malate. Previous structural investigations within the superfamily have reported a dynamic structural segment, termed the SS Loop. To date, active-site asymmetry has raised the question of how SS Loop placement affects participation of key residues during the reaction.

View Article and Find Full Text PDF

DcrB is an 18 kDa lipoprotein that contains a single domain of unknown function. DcrB is found within Enterobacteriaceae, a family of Gram-negative bacteria which includes pathogens that can cause food-borne illness and hospital-acquired infections. In Salmonella enterica serovar Typhimurium, DcrB is up-regulated by conditions that promote the production of known virulence factors.

View Article and Find Full Text PDF

Multi-protein DNA replication complexes called replisomes perform the essential process of copying cellular genetic information prior to cell division. Under ideal conditions, replisomes dissociate only after the entire genome has been duplicated. However, DNA replication rarely occurs without interruptions that can dislodge replisomes from DNA.

View Article and Find Full Text PDF

Wild-type and variant forms of HpmA265 (truncated hemolysin A) from Proteus mirabilis reveal a right-handed, parallel β-helix capped and flanked by segments of antiparallel β-strands. The low-salt crystal structures form a dimeric structure via the implementation of on-edge main-chain hydrogen bonds donated by residues 243-263 of adjacent monomers. Surprisingly, in the high-salt structures of two variants, Y134A and Q125A-Y134A, a new dimeric interface is formed via main-chain hydrogen bonds donated by residues 203-215 of adjacent monomers, and a previously unobserved tetramer is formed.

View Article and Find Full Text PDF

Maintenance and faithful transmission of genomic information depends on the efficient execution of numerous DNA replication, recombination, and repair pathways. Many of the enzymes that catalyze steps within these pathways require access to sequence information that is buried in the interior of the DNA double helix, which makes DNA unwinding an essential cellular reaction. The unwinding process is mediated by specialized molecular motors called DNA helicases that couple the chemical energy derived from nucleoside triphosphate hydrolysis to the otherwise non-spontaneous unwinding reaction.

View Article and Find Full Text PDF

Collisions between cellular DNA replication machinery (replisomes) and damaged DNA or immovable protein complexes can dissociate replisomes before the completion of replication. This potentially lethal problem is resolved by cellular "replication restart" reactions that recognize the structures of prematurely abandoned replication forks and mediate replisomal reloading. In bacteria, this essential activity is orchestrated by the PriA DNA helicase, which identifies replication forks via structure-specific DNA binding and interactions with fork-associated ssDNA-binding proteins (SSBs).

View Article and Find Full Text PDF

Materials science offers microbiologists a wide variety of organic and inorganic materials with chemical and physical properties that can be precisely controlled. These materials present new capabilities for isolating, manipulating and studying bacteria and other microorganisms and are poised to transform microbiology. This review summarizes three classes of materials that span a range of length scales (nano, micro and meso) and describes a variety of fundamental questions in microbiology that can be studied by leveraging their properties.

View Article and Find Full Text PDF