Publications by authors named "Bastow T"

Article Synopsis
  • - The study focuses on Natural Source Zone Depletion (NSZD) of petroleum at a contaminated refinery site in Perth, Australia, measuring the biodegradation rates of various petroleum types including crude oil, gasoline, diesel, and aviation gasoline.
  • - Extensive instrumentation allowed for detailed assessment of soil and groundwater conditions through measurements of gas concentrations, temperature profiles, and liquid thickness, alongside comparisons to a background site with no contamination history.
  • - Results indicated that NSZD rates varied significantly among the petroleum types, with aviation gasoline exhibiting the highest rates, while also highlighting the influence of factors like composition, age, and weathering on the differences observed in biodegradation rates.
View Article and Find Full Text PDF

Quantifying the interlinked behaviour of the soil microbiome, fluid flow, multi-component transport and partitioning, and biodegradation is key to characterising vapour risks and natural source zone depletion (NSZD) of light non-aqueous phase liquid (LNAPL) petroleum hydrocarbons. Critical to vapour transport and NSZD is transport of gases through the vadose zone (oxygen from the atmosphere, volatile organic compounds (VOCs), methane and carbon dioxide from the zone of LNAPL biodegradation). Volatilisation of VOCs from LNAPL, aerobic biodegradation, methanogenesis and heat production all generate gas pressure changes that may lead to enhanced gas fluxes apart from diffusion.

View Article and Find Full Text PDF

Petroleum releases into the subsurface contribute to global soil carbon emissions. Quantifying releases and changes in releases of carbon from soils over the lifetime of a spill is complex. Natural source zone depletion (NSZD) of light non-aqueous phase liquids (LNAPLs) embodies all key mechanisms for transformation to carbon gases and their release from soils including partitioning, transport and degradation of petroleum components.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) are now widespread in the environment. Globally, airfields and paved firefighting training surfaces are particularly affected due to extensive use of aqueous film forming foams (AFFF). This PFAS contamination in exposed concrete and asphalt has not been widely addressed.

View Article and Find Full Text PDF

Correction for 'Method for extraction and analysis of per- and poly-fluoroalkyl substances in contaminated asphalt' by Prashant Srivastava , , 2022, , 1678-1689, https://doi.org/10.1039/D2AY00221C.

View Article and Find Full Text PDF

Per- and poly-fluoroalkyl substances (PFAS) in water are typically present in their ionic (nonvolatile) forms; however, these can transition to their nonionic (volatile) forms when in contact with organic solvents and organic matrices. In particular, when PFAS are dissolved in organic solvents such as residues left from firefighting foams, fuels, and bitumen present in asphalt, the equilibrium between ionic and nonionic forms can trend toward more volatile nonionic forms of PFAS. We assessed the volatility of common PFAS based on calculated and available experimental data across ambient temperature ranges experienced by airfield pavements and at elevated temperatures associated with reworking asphalts for reuse.

View Article and Find Full Text PDF

Petroleum hydrocarbon contamination is a global problem which can cause long-term environmental damage and impacts water security. Natural source zone depletion (NSZD) is the natural degradation of such contaminants. Chemotaxis is an aspect of NSZD which is not fully understood, but one that grants microorganisms the ability to alter their motion in response to a chemical concentration gradient potentially enhancing petroleum NSZD mass removal rates.

View Article and Find Full Text PDF

The legacy use of aqueous film-forming foam (AFFF) has led to the generation of large volumes of per- and poly-fluoroalkyl substances (PFAS)-contaminated asphalt materials, especially at airports and fire training areas. The management of such PFAS-contaminated asphalt materials requires an understanding of PFAS concentrations in these materials. This study, therefore, aimed to develop a suitable extraction methodology for the analysis of 22 target PFAS (, carboxylic acids, sulfonic acids and fluorotelomers) in asphalt materials.

View Article and Find Full Text PDF

Long-term estimates of natural source zone depletion (NSZD) rates for petroleum LNAPL (light non-aqueous phase liquid) sites are not available. One-off measurements are often thought valid over the lifetime of LNAPL sites. In the context of site-wide LNAPL mass estimates, we report site-specific gasoline and diesel NSZD rates spanning 21-26 years.

View Article and Find Full Text PDF

During the First Gulf War (1991) a large number of oil wells were destroyed and oil fires subsequently extinguished with seawater. As a result Kuwait's sparse fresh groundwater resources were severely contaminated with crude oil. Since then limited research has focused on the microbial community ecology of the groundwater and their impact on the associated contamination.

View Article and Find Full Text PDF

Natural source zone depletion (NSZD) of light non-aqueous phase liquids (LNAPLs) includes partitioning, transport and degradation of LNAPL components. NSZD is being considered as a site closure option during later stages of active remediation of LNAPL contaminated sites, and where LNAPL mass removal is limiting. To ensure NSZD meets compliance criteria and to design enhanced NSZD actions if required, residual risks posed by LNAPL and its long term behaviour require estimation.

View Article and Find Full Text PDF

During the 1991 Gulf War, oil wells in the oil fields of Kuwait were set aflame and destroyed. This resulted in severe crude oil pollution of the countries only fresh water aquifers. Here, for the first time the natural attenuation and biodegradation of the persisting groundwater contamination was investigated to assess potential processes in the aquifer.

View Article and Find Full Text PDF

Once released into the environment, petroleum is exposed to biological and physical weathering processes which can lead to the formation and accumulation of highly recalcitrant polar compounds. These polar compounds are often challenging to analyse and can be present as an "unresolved complex mixture" (UCM) in total petroleum hydrocarbon (TPH) analyses and can be mistaken for natural organic matter. Existing research on UCMs comprised of polar compounds is limited, with a majority of the compounds remaining unidentified and their long-term persistence unknown.

View Article and Find Full Text PDF

Understanding dissolution dynamics of hazardous compounds from complex gasoline mixtures is a key to long-term predictions of groundwater risks. The aim of this study was to investigate if the local equilibrium assumption for BTEX and TMBs (trimethylbenzenes) dissolution was valid under variable saturation in two dimensional flow conditions and evaluate the impact of local heterogeneities when equilibrium is verified at the scale of investigation. An initial residual gasoline saturation was established over the upper two-thirds of a water saturated sand pack.

View Article and Find Full Text PDF

The extent of dissolution of petroleum hydrocarbon fuels into groundwater depends greatly on fuel composition. Petroleum fuels can consist of thousands of compounds creating different interactions within the non-aqueous phase liquid (NAPL), thereby affecting the relative dissolution of the components and hence a groundwater plume's composition over long periods. Laboratory experiments were conducted to study the variability in the effective solubilities and activity coefficients for common constituents of gasoline fuels (benzene, toluene, p-xylene and 1,2,4-trimethylbenzene) (BTX) in matrices with an extreme range of molar volumes and chemical affinities.

View Article and Find Full Text PDF

A permeable reactive barrier, consisting of both zero valent iron (ZVI) and a biodegradable organic carbon, was evaluated for the remediation of 1,1,2-trichloroethane (1,1,2-TCA) contaminated groundwater. During an 888 day laboratory column study, degradation rates initially stabilized with a degradation half-life of 4.4±0.

View Article and Find Full Text PDF

This work is motivated by the recent developments in online minerals analysis in the mining and minerals processing industry via nuclear quadrupole resonance (NQR). Here we describe a nuclear magnetic resonance (NMR) and NQR study of the minerals tennantite (Cu12As4S13) and tetrahedrite (Cu12 Sb4S13). In the first part NQR lines associated with (75)As in tennantite and (121,123)Sb isotopes in tetrahedrite are reported.

View Article and Find Full Text PDF

(75)As NQR spectra and relaxation times of synthetic and natural FeAs2 samples have been studied at variable static magnetic field and temperature. FeAs2 is a well understood diamagnetic semiconductor and occurs as the natural mineral lollingite in selected ore deposits. We observed a spin-spin relaxation time enhancement of up to five in synthetic powders in the presence of a weak external static magnetic field.

View Article and Find Full Text PDF

Management and closure of contaminated sites is increasingly being proposed on the basis of mass flux of dissolved contaminants in groundwater. Better understanding of the links between source mass removal and contaminant mass fluxes in groundwater would allow greater acceptance of this metric in dealing with contaminated sites. Our objectives here were to show how measurements of the distribution of contaminant mass flux and the overall mass discharge emanating from the source under undisturbed groundwater conditions could be related to the processes and extent of source mass depletion.

View Article and Find Full Text PDF

Aging in super glassy polymers such as poly(trimethylsilylpropyne) (PTMSP), poly(4-methyl-2-pentyne) (PMP), and polymers with intrinsic microporosity (PIM-1) reduces gas permeabilities and limits their application as gas-separation membranes. While super glassy polymers are initially very porous, and ultra-permeable, they quickly pack into a denser phase becoming less porous and permeable. This age-old problem has been solved by adding an ultraporous additive that maintains the low density, porous, initial stage of super glassy polymers through absorbing a portion of the polymer chains within its pores thereby holding the chains in their open position.

View Article and Find Full Text PDF

The composition of light non-aqueous phase liquid (LNAPL) gasoline and other petroleum products changes profoundly over their life once released into aquifers. However limited attention has been given to how such changes affect key parameters such as the activity coefficients which control partitioning of components of petroleum fuel into groundwater and are used to predict long-term risk from fuel releases. Laboratory experiments were conducted on a range of fresh, weathered and synthetic gasoline mixtures designed to mimic the expected changes in composition in an aquifer.

View Article and Find Full Text PDF

A field-based investigation was conducted at a contaminated site where the vadose zone was contaminated with a range of chlorinated hydrocarbons. The investigation consisted of groundwater and multilevel soil-gas monitoring of a range of contaminants and gases, along with isotope measurements and microbiology studies. The investigation provided multiple lines of evidence that demonstrated aerobic biodegradation of vinyl chloride (VC) was occurring in the vadose zone (i) above the on-site source zone, and (ii) above the downgradient off-site groundwater plume location.

View Article and Find Full Text PDF

The direct measurement and identification of solid state arsenic phases using (75)As NMR is made difficult by the simultaneous conditions of large quadrupole moment and low coordination symmetry in many compounds. However, specific arsenic minerals can efficiently be detected and discriminated via nuclear quadrupolar resonance (NQR). We report on the first NMR and NQR measurements in the natural minerals enargite (Cu3AsS4), niccolite (NiAs), arsenopyrite (FeAsS) and loellingite (FeAs2).

View Article and Find Full Text PDF

An automated semi-continuous on-line instrument has been developed to measure CO2 gas concentrations in the vadose zone. The instrument uses semi-permeable polymer tubing (CO2 probe) for diffusion based sampling, coupled to an infra red sensor. The system operated automatically by intermittently purging the CO2 probe, which was installed in the vadose zone, with a non-CO2 gas at a low flow rate.

View Article and Find Full Text PDF

Mass depletion-mass flux relationships usually applied to a groundwater plume were established at field scale for groundwater pumped from within the source zone of a dense non-aqueous phase liquid (DNAPL). These were used as part of multiple lines of evidence in establishing the DNAPL source mass and architecture. Simplified source mass-dissolved concentration models including those described by exponential, power, and error functions as well as a rational mass equation based on the equilibrium stream tube approach were fitted to data from 285 days of source zone pumping (SZP) from a single well which removed 152 kg of dissolved organics from a multi-component, reactive brominated solvent DNAPL.

View Article and Find Full Text PDF