Cystobactamids are myxobacteria-derived topoisomerase inhibitors with potent anti-Gram-negative activity. They are formed by a non-ribosomal peptide synthetase (NRPS) and consist of tailored para-aminobenzoic acids, connected by a unique α-methoxy-L-isoasparagine or a β-methoxy-L-asparagine linker moiety. We describe the heterologous expression of the cystobactamid biosynthetic gene cluster (BGC) in Myxococcus xanthus.
View Article and Find Full Text PDFB-dependent radical SAM enzymes that can perform methylations on sp carbon centers are important for functional diversity and regulation of biological activity in several nonribosomal peptides. Detailed studies on these enzymes are hindered by the complexity of the substrates and low levels of expression of active enzymes. CysS can catalyze iterative methylations of a methoxybenzene moiety during the biosynthesis of the cystobactamids.
View Article and Find Full Text PDFA comprehensive reinvestigation of chemical constituents from CHCl-soluble extract of Cipadessa baccifera led to the isolation of two new limonoids 1, 2 together with six known compounds 3-8. Their structures were established on the basis of extensive analysis of spectroscopic (IR, MS, 2D NMR) data. Further, a series of cipaferen G (3) derivatives were efficiently synthesized utilizing Yamaguchi esterification (2, 4, 6-trichlorobenzoyl chloride, EtN, THF, DMAP, toluene) at the C-3 position of the limonoids core, which is being reported for the first time.
View Article and Find Full Text PDFThe biosynthesis of branched alkoxy groups, such as the unique t-butyl group found in a variety of natural products, is still poorly understood. Recently, cystobactamids were isolated and identified from Cystobacter sp as novel antibacterials. These metabolites contain an isopropyl group proposed to be formed using CysS, a cobalamin-dependent radical S-adenosylmethionine (SAM) methyltransferase.
View Article and Find Full Text PDF