A current trend within photo-dynamic therapy (PDT) is the development of molecular systems targeting hypoxic tumors. Thus, type I PDT sensitizers could here overcome traditional type II molecular systems that rely on the photo-initiated production of toxic singlet oxygen. Here, we investigate the cell localization properties and toxicity of two polymeric anthracene-based fluorescent probes (neutral Ant-PHEA and cationic Ant-PIm).
View Article and Find Full Text PDFThe binding interaction of a biocompatible water-soluble polycationic two-photon fluorophore () toward human serum albumin (HSA) was thoroughly investigated under simulated physiological conditions using a combination of steady-state, time-resolved, and two-photon excited fluorescence techniques. The emission properties of both and the fluorescent amino acid residues in HSA undergo remarkable changes upon complexation allowing the thermodynamic profile associated with -HSA complexation to be accurately established. The marked increase in fluorescence intensity and quantum yield in the proteinous environment seems to be the outcome of the attenuation of radiationless decay pathways resulting from motional restriction imposed on the fluorophore.
View Article and Find Full Text PDFThe implication of guanine-rich DNA sequences in biologically important roles such as telomerase dysfunction and the regulation of gene expression has prompted the search for structure-specific G-quadruplex agents for targeted diagnostic and therapeutic applications. Herein, we report on a near-infrared (NIR) two-photon poly(cationic) anthracene-based macromolecule able to selectively target G-quadruplexes (G4s) over genomic double-stranded DNA. In particular, the striking changes in its linear and third-order nonlinear optical properties, combined with the emergence of a strong induced electronic circular dichroism (ECD) signal upon binding to canonical and noncanonical DNA secondary structures allowed for a highly specific detection of several different G4s.
View Article and Find Full Text PDFWe report the synthesis, spectroscopy, and the DNA binding properties of a biocompatible, water-soluble, polycationic two-photon absorbing anthracenyl derivative (Ant-PIm) specifically designed for biorelated applications. Detailed insights into the Ant-PIm-DNA binding interaction are provided by using several spectroscopic approaches, including UV-vis absorption, circular dichroism (CD), Fourier-transform infrared spectroscopy (FTIR), steady-state, and time-resolved fluorescence techniques. Absorption and fluorescence quantitative data analysis show a strong Ant-PIm-duplex interaction with binding constants of K = 4.
View Article and Find Full Text PDFThree boron diketonate chromophores with extended π-conjugated backbone were prepared and their spectroscopic features were investigated through a combined theoretical/experimental study. It was shown that these complexes, which undergo very large electronic reorganization upon photoexcitation, combine large two-photon absorption cross section with an emission energy and quantum efficiency in solution that is strongly dependent on solvent polarity. The strong positive influence of boron complexation on the magnitude of the two-photon absorption was clearly established, and it was shown that the two-photon absorption properties were dominated by the quadrupolar term.
View Article and Find Full Text PDFWe have studied the interaction of a polymeric water soluble anthracenyl derivative () with salmon testes DNA. The results from UV-Vis, fluorescence, Fourier transform infrared (FT-IR) and circular dichroism spectroscopies indicate that the groove binding process regulates the interaction between and DNA. The binding constants, calculated by absorption spectroscopy at 298, 304 and 310 K, were equal to 3.
View Article and Find Full Text PDFCyclic peptides with a linear tail (CPLT) have been successfully used to model two zinc fingers (ZFs) adopting the treble-clef- and loosened zinc-ribbon folds. In this article, we examine the factors that may influence the design of such ZF models: mutations in the sequence, size of the cycle, and size of the tail. For this purpose, several peptides derived from the CPLT-based models of the treble-clef- and loosened zinc-ribbon ZF were synthesized and studied.
View Article and Find Full Text PDF