The retina is prone to developing pathological neovascularization, a leading cause of blindness in humans. Because excess neovascularization does not affect the entire retina, global inhibition treatment of angiogenesis critically interferes with healthy, unaffected retinal tissue. We therefore established an photoactivated gene expression paradigm which would allow light-mediated targeting of antiangiogenic genetic treatment only to affected retinal regions.
View Article and Find Full Text PDFWe report the synthesis and photolytic properties of caged 9-aminodoxycycline derivatives modified with 2-{4'-bis-[2-(2methoxyethoxy)ethyl]-4-nitrobiphenyl-3-yl}prop-1-oxy (EANBP) and PEG7-ylated (7-diethylamino-2-oxo-2H-chromen-4-yl)methyl (PEG7-DEACM) groups. 9-Aminodoxycycline is a tetracycline analogue capable of activating transcription through the inducible TetOn transgene expression system and can be regioselectively coupled to two-photon-sensitive photo-removable protecting groups by carbamoylation. The EANBP-based caged 9-aminodoxycycline showed complex photochemical reactions but did release 10 % of 9-aminodoxycycline.
View Article and Find Full Text PDF