Publications by authors named "Bastien Gerby"

B cell acute lymphoblastic leukemia (B-ALL) is a multistep disease characterized by the hierarchical acquisition of genetic alterations. However, the question of how a primary oncogene reprograms stem cell-like properties in committed B cells and leads to a preneoplastic population remains unclear. Here, we used the PAX5::ELN oncogenic model to demonstrate a causal link between the differentiation blockade, the self-renewal, and the emergence of preleukemic stem cells (pre-LSCs).

View Article and Find Full Text PDF

Early T-cell development is precisely controlled by E proteins, that indistinguishably include HEB/TCF12 and E2A/TCF3 transcription factors, together with NOTCH1 and pre-T cell receptor (TCR) signalling. Importantly, perturbations of early T-cell regulatory networks are implicated in leukemogenesis. NOTCH1 gain of function mutations invariably lead to T-cell acute lymphoblastic leukemia (T-ALL), whereas inhibition of E proteins accelerates leukemogenesis.

View Article and Find Full Text PDF

Our understanding of the hierarchical structure of acute leukemia has yet to be fully translated into therapeutic approaches. Indeed, chemotherapy still has to take into account the possibility that leukemia-initiating cells may have a distinct chemosensitivity profile compared to the bulk of the tumor, and therefore are spared by the current treatment, causing the relapse of the disease. Therefore, the identification of the cell-of-origin of leukemia remains a longstanding question and an exciting challenge in cancer research of the last few decades.

View Article and Find Full Text PDF
Article Synopsis
  • * The study analyzed 113 cases of del(11q) MDS, highlighting features like a predominance in females, survival rates similar to other MDS cases, and a specific genetic deletion affecting key genes associated with hematopoiesis.
  • * Findings suggest that the loss of the CADM1 gene, along with other genetic mutations, may play a significant role in the development of del(11q) MDS, indicating its potential as
View Article and Find Full Text PDF

is a well-known haploinsufficient tumor suppressor gene in human B-cell precursor acute lymphoblastic leukemia (B-ALL) and is involved in various chromosomal translocations that fuse a part of PAX5 with other partners. However, the role of PAX5 fusion proteins in B-ALL initiation and transformation is ill-known. We previously reported a new recurrent t(7;9)(q11;p13) chromosomal translocation in human B-ALL that juxtaposed to the coding sequence of elastin ().

View Article and Find Full Text PDF

Pax5 is the guardian of the B cell identity since it primes or enhances the expression of B cell specific genes and concomitantly represses the expression of B cell inappropriate genes. The tight regulation of is therefore required for an efficient B cell differentiation. A defect in its dosage can translate into immunodeficiency or malignant disorders such as leukemia or lymphoma.

View Article and Find Full Text PDF

Current chemotherapies for T cell acute lymphoblastic leukemia (T-ALL) efficiently reduce tumor mass. Nonetheless, disease relapse attributed to survival of preleukemic stem cells (pre-LSCs) is associated with poor prognosis. Herein, we provide direct evidence that pre-LSCs are much less chemosensitive to existing chemotherapy drugs than leukemic blasts because of a distinctive lower proliferative state.

View Article and Find Full Text PDF

The molecular determinants that render specific populations of normal cells susceptible to oncogenic reprogramming into self-renewing cancer stem cells are poorly understood. Here, we exploit T-cell acute lymphoblastic leukemia (T-ALL) as a model to define the critical initiating events in this disease. First, thymocytes that are reprogrammed by the SCL and LMO1 oncogenic transcription factors into self-renewing pre-leukemic stem cells (pre-LSCs) remain non-malignant, as evidenced by their capacities to generate functional T cells.

View Article and Find Full Text PDF

Development of novel therapies is critical for T-cell acute leukaemia (T-ALL). Here, we investigated the effect of inhibiting the MAPK/MEK/ERK pathway on T-ALL cell growth. Unexpectedly, MEK inhibitors (MEKi) enhanced growth of 70% of human T-ALL cell samples cultured on stromal cells independently of NOTCH activation and maintained their ability to propagate in vivo.

View Article and Find Full Text PDF

SCL/TAL1, a tissue-specific transcription factor of the basic helix-loop-helix family, and c-Kit, a tyrosine kinase receptor, control hematopoietic stem cell survival and quiescence. Here we report that SCL levels are limiting for the clonal expansion of Kit⁺ multipotent and erythroid progenitors. In addition, increased SCL expression specifically enhances the sensitivity of these progenitors to steel factor (KIT ligand) without affecting interleukin-3 response, whereas a DNA-binding mutant antagonizes KIT function and induces apoptosis in progenitors.

View Article and Find Full Text PDF
Article Synopsis
  • Acute megakaryoblastic leukemia (AMKL) is a complex and aggressive form of leukemia with poor outcomes, often lacking identifiable mutations in patients, making treatment challenging.* -
  • Researchers modeled pediatric AMKL using immunodeficient mice and identified new molecular subgroups through high-throughput RNA sequencing, including notable gene fusions like CBFA2T3-GLIS2 and MLL or NUP98 fusions.* -
  • The findings offer potential biomarkers for diagnosing and monitoring AMKL, and the xenograft models developed can be used to test the effectiveness of new treatments, such as Aurora A kinase inhibitors.*
View Article and Find Full Text PDF

The mechanism by which cells decide to skip mitosis to become polyploid is largely undefined. Here we used a high-content image-based screen to identify small-molecule probes that induce polyploidization of megakaryocytic leukemia cells and serve as perturbagens to help understand this process. Our study implicates five networks of kinases that regulate the switch to polyploidy.

View Article and Find Full Text PDF

Genomic studies in human acute lymphoblastic leukemia (ALL) have revealed clonal heterogeneity at diagnosis and clonal evolution at relapse. In this study, we used genome-wide profiling to compare human T cell ALL samples at the time of diagnosis and after engraftment (xenograft) into immunodeficient recipient mice. Compared with paired diagnosis samples, the xenograft leukemia often contained additional genomic lesions in established human oncogenes and/or tumor suppressor genes.

View Article and Find Full Text PDF

TAL1 (also known as SCL) is expressed in >40% of human T cell acute lymphoblastic leukemias (T-ALLs). TAL1 encodes a basic helix-loop-helix transcription factor that can interfere with the transcriptional activity of E2A and HEB during T cell leukemogenesis; however, the oncogenic pathways directly activated by TAL1 are not characterized. In this study, we show that, in human TAL1-expressing T-ALL cell lines, TAL1 directly activates NKX3.

View Article and Find Full Text PDF

Iodinated derivatives of verapamil were synthesized and tested as P-glycoprotein (Pgp)-mediated multidrug resistance (MDR) reversal agents. The ability of these compounds to revert MDR was evaluated on daunorubicin-resistant K562 cells, by measuring the intracellular accumulation of rhodamine 123, a fluorescent probe of Pgp transport activity. One of the investigated compounds (16c) was found to be a more potent MDR reversal agent than verapamil and cyclosporin A, used as reference molecules.

View Article and Find Full Text PDF

Understanding the pathways that regulate the human T-cell acute lymphoblastic leukemia (T-ALL) initiating cells (T-LiC) activity has been hampered by the lack of biologic assays in which this human disease can be studied. Here we show that coculture of primary human T-ALL with a mouse stromal cell line expressing the NOTCH ligand delta-like-1 (DL1) reproducibly allowed maintenance of T-LiC and long-term growth of blast cells. Human T-ALL mutated or not on the NOTCH receptor required sustained activation of the NOTCH pathway via receptor/ligand interaction for growth and T-LiC activity.

View Article and Find Full Text PDF

2-Arylidenedihydroindole-3-ones were assayed for their antiproliferative and apoptotic abilities as potential drug candidates to treat bladder tumor. These compounds were tested on cell lines obtained from bladder tumors of various stages [superficial (pTa and pT1) vs. invasive (pT2)].

View Article and Find Full Text PDF