Urolithin A (uroA) is a polyphenol derived from the multi-step metabolism of dietary ellagitannins by the human gut microbiota. Once absorbed, uroA can trigger mitophagy and aryl hydrocarbon receptor signaling pathways, altering host immune function, mitochondrial health, and intestinal barrier integrity. Most individuals harbor a microbiota capable of uroA production; however, the mechanisms underlying the dehydroxylation of its catechol-containing precursor (uroC) are unknown.
View Article and Find Full Text PDFUnlabelled: Dietary fibers influence the composition of the human gut microbiota and directly contribute to its downstream effects on host health. As more research supports the use of glycans as prebiotics for therapeutic applications, the need to identify the gut bacteria that metabolize glycans of interest increases. Fructo-oligosaccharide (FOS) is a common diet-derived glycan that is fermented by the gut microbiota and has been used as a prebiotic.
View Article and Find Full Text PDFis a bacterium that causes life-threatening intestinal infections. Infection symptoms are mediated by a toxin secreted by the bacterium. Toxin pathogenesis is modulated by the intracellular molecule, inositol-hexakisphosphate (IP6).
View Article and Find Full Text PDFA polyphasic taxonomic approach, incorporating analysis of phenotypic features, cellular fatty acid profiles, 16S rRNA gene sequences, and determination of average nucleotide identity (ANI) plus digital DNA-DNA hybridization (dDDH), was applied to characterize an anaerobic bacterial strain designated KD22 isolated from human feces. 16S rRNA gene-based phylogenetic analysis showed that strain KD22 was found to be most closely related to species of the genus Gabonibacter. At the 16S rRNA gene level, the closest species from the strain KD22 corresponded with Gabonibacter massiliensis GM7, with a similarity of 97.
View Article and Find Full Text PDFRapid dietary changes, such as switching from high-forage to high-grain diets, can modify the rumen microbiome and initiate gastrointestinal distress, such as bloating. In such cases, feed additives, including prebiotics and live microbials, can be used to mitigate these negative consequences. Bio-Mos® is a carbohydrate-based prebiotic derived from yeast cells that is reported to increase livestock performance.
View Article and Find Full Text PDFThe composition and metabolism of the human gut microbiota are strongly influenced by dietary complex glycans, which cause downstream effects on the physiology and health of hosts. Despite recent advances in our understanding of glycan metabolism by human gut bacteria, we still need methods to link glycans to their consuming bacteria. Here, we use a functional assay to identify and isolate gut bacteria from healthy human volunteers that take up different glycans.
View Article and Find Full Text PDFDiet-derived polysaccharides are an important carbon source for gut bacteria and shape the human gut microbiome. Acarbose, a compound used clinically to treat type 2 diabetes, is known to inhibit the growth of some bacteria on starches based on its activity as an inhibitor of α-glucosidases and α-amylases. In contrast to acarbose, montbretin A, a new drug candidate for the treatment of type 2 diabetes, has been reported to be more specific for the inhibition of α-amylase, notably human pancreatic α-amylase.
View Article and Find Full Text PDFUnlabelled: Several approaches to manipulate the gut microbiome for improving the activity of cancer immune-checkpoint inhibitors (ICI) are currently under evaluation. Here, we show that oral supplementation with the polyphenol-rich berry camu-camu (CC; Myrciaria dubia) in mice shifted gut microbial composition, which translated into antitumor activity and a stronger anti-PD-1 response. We identified castalagin, an ellagitannin, as the active compound in CC.
View Article and Find Full Text PDFMyo-inositol hexakisphosphate (IP6) is a natural product known to inhibit vascular calcification (VC), but with limited potency and low plasma exposure following bolus administration. Here we report the design of a series of inositol phosphate analogs as crystallization inhibitors, among which 4,6-di-O-(methoxy-diethyleneglycol)-myo-inositol-1,2,3,5-tetrakis(phosphate), (OEG)-IP4, displays increased in vitro activity, as well as more favorable pharmacokinetic and safety profiles than IP6 after subcutaneous injection. (OEG)-IP4 potently stabilizes calciprotein particle (CPP) growth, consistently demonstrates low micromolar activity in different in vitro models of VC (i.
View Article and Find Full Text PDFThe human gastrointestinal tract hosts almost a trillion microorganisms, organized in a complex community known as the gut microbiota, an integral part of human physiology and metabolism. Indeed, disease-specific alterations in the gut microbiota have been observed in several chronic disorders, including obesity and inflammatory bowel diseases. Correcting these alterations could revert the development of such pathologies or alleviate their symptoms.
View Article and Find Full Text PDFDespite many years of research and a few success stories with gene therapeutics, efficient and safe DNA delivery remains a major bottleneck for the clinical translation of gene-based therapies. Gene transfection with calcium phosphate (CaP) nanoparticles brings the advantages of low toxicity, high DNA entrapment efficiency and good endosomal escape properties. The macroscale aggregation of CaP nanoparticles can be easily prevented through surface coating with bisphosphonate conjugates.
View Article and Find Full Text PDFClostridium difficile causes increasing numbers of life-threatening intestinal infections. Symptoms associated with C. difficile infection (CDI) are mediated by secreted protein toxins, whose virulence is modulated by intracellular auto-proteolysis following allosteric activation of their protease domains by inositol hexakisphosphate (IP6).
View Article and Find Full Text PDFCalcium phosphate (CaP) nanoparticles are promising gene delivery carriers due to their bioresorbability, ease of preparation, high gene loading efficacy, and endosomal escape properties. However, the rapid aggregation of the particles needs to be addressed in order to have potential in vivo. In addition, there is a need to better understand the relationship between CaP nanoparticle properties and their interactions with cells.
View Article and Find Full Text PDFTargeted delivery of therapeutic agents to hepatocytes is a particularly attractive strategy for the treatment of hepatocellular carcinoma and other liver diseases. The asialoglycoprotein receptor (ASGP-R) is abundantly expressed on hepatocytes and minimally found on extra-hepatic cells, making it an ideal entry gateway for hepatocyte-targeted therapy. Numerous multivalent ligands have been developed to target ASGP-R, among which well-defined multivalent ligands display especially high binding affinity to the receptor.
View Article and Find Full Text PDFNucleic acid therapy can be beneficial for the local treatment of gastrointestinal diseases that currently lack appropriate treatments. Indeed, several oligonucleotides (ONs) are currently progressing through clinical trials as potential treatments for inflammatory bowel diseases. However, due to low uptake of carrier-free ONs by mucosal cells, strategies aimed at increasing the potency of orally administered ONs would be highly desirable.
View Article and Find Full Text PDFThere is a paucity of chiral phosphoramidite reagents or chiral catalysis methods for the synthesis of biologically relevant inositol phosphates. A new C2-symmetrical chiral phosphoramidite has been developed and successfully applied to the synthesis of a set of chiral inositol bisphosphates. The reagent allowed bis-phosphorylation and chiral resolution, resulting in a concise synthetic route, thus expanding the toolbox available for the preparation of biologically relevant inositol phosphates in high optical purity.
View Article and Find Full Text PDFParadigms found: Inositol phosphates are biomolecules found ubiquitously in eukaryotes, in which they play a number of vital biological roles. Their enantioselective synthesis has recently received a boost from two complementary phosphorylation methods that could change the way they are synthesised, and hopefully provide invaluable chemical biology tools to further our understanding of this large family.
View Article and Find Full Text PDFWe report a novel oral prodrug approach where a solubilizing polymer conjugated to the drug is designed to be released by the action of an exogenously administered agent in the intestine. A redox-sensitive self-immolating design was implemented, and the reconversion kinetics were studied for three reducible prodrugs.
View Article and Find Full Text PDFSignificant progress has been made by industry and academia in the past two years to address the medical threats posed by Clostridium difficile infection. These developments provide an excellent example of how patient need has driven a surge of innovation in drug discovery. Indeed, only two drugs were approved for the infection in the past 30 years but there are 13 treatment candidates in clinical trials today.
View Article and Find Full Text PDFThe use of stimuli-responsive bioactive molecules is an attractive strategy to circumvent selectivity issues in vivo. Here, we report an activatable cell penetrating peptide (CPP) strategy ultimately aimed at delivering nucleic acid drugs to the colon mucosa using bacterial azoreductase as the local reconversion trigger. Through screening of a panel of CPPs, we identified a sequence (M918) capable of carrying a nucleic acid analogue payload.
View Article and Find Full Text PDFMany potent drugs are difficult to administer intravenously due to poor aqueous solubility. A common approach for addressing this issue is to process them into colloidal dispersions known as "nanocrystals" (NCs). However, NCs possess high-energy surfaces that must be stabilized with surfactants to prevent aggregation.
View Article and Find Full Text PDFEur J Pharm Biopharm
September 2013
Cell-penetrating peptides have been widely investigated as delivery vehicles for oligonucleotides (e.g., siRNA and antisense oligonucleotides).
View Article and Find Full Text PDFPrimary examples in vaccine design have shown good levels of carbohydrate-specific antibody generation when raised using extracted or fully synthetic capsular polysaccharide glycans covalently coupled to a protein carrier. Herein, we cover recent clinical developments of carbohydrate-based vaccines and describe how novel cutting-edge methodology for the total synthesis of oligosaccharides and for the precise placement of carbohydrates at pre-determined sites within a protein may be used to further improve the safety and efficacy of glycovaccines.
View Article and Find Full Text PDF