Publications by authors named "Bastide P"

Genomic data collected from viral outbreaks can be exploited to reconstruct the dispersal history of viral lineages in a two-dimensional space using continuous phylogeographic inference. These spatially explicit reconstructions can subsequently be used to estimate dispersal metrics that can be informative of the dispersal dynamics and the capacity to spread among hosts. Heterogeneous sampling efforts of genomic sequences can however impact the accuracy of phylogeographic dispersal metrics.

View Article and Find Full Text PDF

Accurate estimation of the dispersal velocity or speed of evolving organisms is no mean feat. In fact, existing probabilistic models in phylogeography or spatial population genetics generally do not provide an adequate framework to define velocity in a relevant manner. For instance, the very concept of instantaneous speed simply does not exist under one of the most popular approaches that models the evolution of spatial coordinates as Brownian trajectories running along a phylogeny.

View Article and Find Full Text PDF

Accurate estimation of the dispersal velocity or speed of evolving organisms is no mean feat. In fact, existing probabilistic models in phylogeography or spatial population genetics generally do not provide an adequate framework to define velocity in a relevant manner. For instance, the very concept of instantaneous speed simply does not exist under one of the most popular approaches that models the evolution of spatial coordinates as Brownian trajectories running along a phylogeny (Lemey et al.

View Article and Find Full Text PDF

Genomic data collected from viral outbreaks can be exploited to reconstruct the dispersal history of viral lineages in a two-dimensional space using continuous phylogeographic inference. These spatially explicit reconstructions can subsequently be used to estimate dispersal metrics allowing to unveil the dispersal dynamics and evaluate the capacity to spread among hosts. Heterogeneous sampling intensity of genomic sequences can however impact the accuracy of dispersal insights gained through phylogeographic inference.

View Article and Find Full Text PDF

EvoLaps is a user-friendly web application designed to visualize the spatial and temporal spread of pathogens. It takes an annotated tree as entry, such as a maximum clade credibility tree obtained through continuous phylogeographic inference. By following a 'Top-Down' reading of a tree recursively, transitions (latitude/longitude changes from a node to its children) are represented on a cartographic background using graphical paths.

View Article and Find Full Text PDF

Phylogenetic comparative methods use random processes, such as the Brownian Motion, to model the evolution of continuous traits on phylogenetic trees. Growing evidence for non-gradual evolution motivated the development of complex models, often based on Lévy processes. However, their statistical inference is computationally intensive and currently relies on approximations, high-dimensional sampling, or numerical integration.

View Article and Find Full Text PDF

Premise: Floral evolution in large clades is difficult to study not only because of the number of species involved, but also because they often are geographically widespread and include a diversity of outcrossing pollination systems. The cosmopolitan blueberry family (Ericaceae) is one such example, most notably pollinated by bees and multiple clades of nectarivorous birds.

Methods: We combined data on floral traits, pollination ecology, and geography with a comprehensive phylogeny to examine the structuring of floral diversity across pollination systems and continents.

View Article and Find Full Text PDF

Interspecies RNA-Seq datasets are increasingly common, and have the potential to answer new questions about the evolution of gene expression. Single-species differential expression analysis is now a well-studied problem that benefits from sound statistical methods. Extensive reviews on biological or synthetic datasets have provided the community with a clear picture on the relative performances of the available methods in various settings.

View Article and Find Full Text PDF

The Ascomycete threatens elm populations worldwide. The molecular mechanisms underlying its pathogenicity and virulence are still largely uncharacterized. As part of a collaborative study of the -elm interactome, we analyzed the ssp.

View Article and Find Full Text PDF

To investigate the spread of (RYMV) along the Niger River, regular sampling of virus isolates was conducted along 500 km of the Niger Valley in the Republic of Niger and was complemented by additional sampling in neighbouring countries in West Africa and Central Africa. The spread of RYMV into and within the Republic of Niger was inferred as a continuous process using a Bayesian statistical framework applied previously to reconstruct its dispersal history in West Africa, East Africa, and Madagascar. The spatial resolution along this section of the Niger River was the highest implemented for RYMV and possibly for any plant virus.

View Article and Find Full Text PDF

Computational analyses of pathogen genomes are increasingly used to unravel the dispersal history and transmission dynamics of epidemics. Here, we show how to go beyond historical reconstructions and use spatially-explicit phylogeographic and phylodynamic approaches to formally test epidemiological hypotheses. We illustrate our approach by focusing on the West Nile virus (WNV) spread in North America that has substantially impacted public, veterinary, and wildlife health.

View Article and Find Full Text PDF

The transmission process of an infectious agent creates a connected chain of hosts linked by transmission events, known as a transmission chain. Reconstructing transmission chains remains a challenging endeavour, except in rare cases characterized by intense surveillance and epidemiological inquiry. Inference frameworks attempt to estimate or approximate these transmission chains but the accuracy and validity of such methods generally lack formal assessment on datasets for which the actual transmission chain was observed.

View Article and Find Full Text PDF

Healthcare enterprises are starting to adopt cloud computing due to its numerous advantages over traditional infrastructures. This has become a necessity because of the increased volume, velocity and variety of healthcare data, and the need to facilitate data correlation and large-scale analysis. Cloud computing infrastructures have the power to offer continuous acquisition of data from multiple heterogeneous sources, efficient data integration, and big data analysis.

View Article and Find Full Text PDF

Markov models of character substitution on phylogenies form the foundation of phylogenetic inference frameworks. Early models made the simplifying assumption that the substitution process is homogeneous over time and across sites in the molecular sequence alignment. While standard practice adopts extensions that accommodate heterogeneity of substitution rates across sites, heterogeneity in the process over time in a site-specific manner remains frequently overlooked.

View Article and Find Full Text PDF

Understanding the origin of diversity is a fundamental problem in evolutionary biology. The null expectation for the evolutionary diversification is that all changes in biological diversity are the result of random processes. Adaptive radiations depart from this expectation as ecological factors and natural selection are supposed to play a central role in driving exceptional diversification.

View Article and Find Full Text PDF

The conspecificity of Finnish and western Canadian isolates of the decay fungus Chondrostereum purpureum was investigated by several approaches, including the assessment of genetic variability, mating and progeny analysis, and the analysis of selected phenotypic traits. Eight second-generation single spore strains per fungal isolate pairing were investigated with specific genetic markers developed for both Finnish and Canadian parental isolates. Tests of linkage disequilibrium were used to analyze whether these markers assorted independently among single spore strains.

View Article and Find Full Text PDF

Among the Saprolegnia species found in aquaculture facilities, S. parasitica is recognized as the primary fish pathogen and remains an ongoing concern in fish health management. Until recently, these pathogens were kept in check by use of malachite green; due to its toxicity, this chemical has now been banned from use in many countries.

View Article and Find Full Text PDF

The goal of phylogenetic comparative methods (PCMs) is to study the distribution of quantitative traits among related species. The observed traits are often seen as the result of a Brownian Motion (BM) along the branches of a phylogenetic tree. Reticulation events such as hybridization, gene flow or horizontal gene transfer, can substantially affect a species' traits, but are not modeled by a tree.

View Article and Find Full Text PDF

To study the evolution of several quantitative traits, the classical phylogenetic comparative framework consists of a multivariate random process running along the branches of a phylogenetic tree. The Ornstein-Uhlenbeck (OU) process is sometimes preferred to the simple Brownian motion (BM) as it models stabilizing selection toward an optimum. The optimum for each trait is likely to be changing over the long periods of time spanned by large modern phylogenies.

View Article and Find Full Text PDF

PhyloNetworks is a Julia package for the inference, manipulation, visualization, and use of phylogenetic networks in an interactive environment. Inference of phylogenetic networks is done with maximum pseudolikelihood from gene trees or multi-locus sequences (SNaQ), with possible bootstrap analysis. PhyloNetworks is the first software providing tools to summarize a set of networks (from a bootstrap or posterior sample) with measures of tree edge support, hybrid edge support, and hybrid node support.

View Article and Find Full Text PDF

The ITS region of the rDNA gene was compared for Saprolegnia spp. in order to improve our understanding of nucleotide sequence variability within and between species of this genus, determine species composition in Canadian fin fish aquaculture facilities, and to assess the utility of ITS sequence variability in genetic marker development. From a collection of more than 400 field isolates, ITS region nucleotide sequences were studied and it was determined that there was sufficient consistent inter-specific variation to support the designation of species identity based on ITS sequence data.

View Article and Find Full Text PDF

Background: The highly aggressive pathogenic fungus Ophiostoma novo-ulmi continues to be a serious threat to the American elm (Ulmus americana) in North America. Extensive studies have been conducted in North America to understand the mechanisms of virulence of this introduced pathogen and its evolving population structure, with a view to identifying potential strategies for the control of Dutch elm disease. As part of a larger study to examine the genomes of economically important Ophiostoma spp.

View Article and Find Full Text PDF

Background: The economic impact of adding chlorhexidine gluconate (CHG)-impregnated sponge dressing to standard care (ie, chg-impregnated sponge dressing + skin preparation and transparent film dressing vs skin preparation and transparent film dressing) for the prevention of central-line infections was evaluated.

Methods: Clinical and economic data were obtained from peer-reviewed published studies to populate the decision model. The efficacy of reducing catheter-related bloodstream infection (CR-BSI) incidence with CHG-impregnated sponge dressing came from 2 recent randomized controlled trials.

View Article and Find Full Text PDF

The fungal pathogen, Ophiostomo novo-ulmi, has been responsible for the rapid decline of American elm (Ulmus americana) across North America and remains a serious threat to surviving elm populations. The production of pectinolytic polygalacturonase enzymes has been implicated as a virulence factor for many fungal pathogens, including O. novo-ulmi.

View Article and Find Full Text PDF

Variations of protein kinase C (PKC) expression greatly influence the proliferation-to-differentiation transition (PDT) of intestinal epithelial cells and might have an important impact on intestinal tumorigenesis. We demonstrate here that the expression of PKCalpha in proliferating intestinal epithelial cells is repressed both in vitro and in vivo by the SOX9 transcription factor. This repression does not require DNA binding of the SOX9 high-mobility group (HMG) domain but is mediated through a new mechanism of SOX9 action requiring the central and highly conserved region of SOXE members.

View Article and Find Full Text PDF