Eukaryotic cells can undergo different forms of programmed cell death, many of which culminate in plasma membrane rupture as the defining terminal event. Plasma membrane rupture was long thought to be driven by osmotic pressure, but it has recently been shown to be in many cases an active process, mediated by the protein ninjurin-1 (NINJ1). Here we resolve the structure of NINJ1 and the mechanism by which it ruptures membranes.
View Article and Find Full Text PDFMany proteins involved in eukaryotic phosphate homeostasis are regulated by SPX domains. In yeast, the vacuolar transporter chaperone (VTC) complex contains two such domains, but mechanistic details of its regulation are not well understood. Here, we show at the atomic level how inositol pyrophosphates interact with SPX domains of subunits Vtc2 and Vtc3 to control the activity of the VTC complex.
View Article and Find Full Text PDFUV-cross-linking mass spectrometry is an emerging technique to obtain structural information of biomacromolecules and their complexes and . In particular, certain photo-reactive amino acids (pA) such as photo-leucine (pLeu) and photo-methionine can provide unique short-distance information on the structural core regions of proteins. Here, we present a protocol for high-yield incorporation of pLeu in proteins recombinantly expressed in .
View Article and Find Full Text PDFThe nuclear factor of kappa light polypeptide gene enhancer in B-cells (NFκB) transcription factors play a critical role in human immune response. The family includes homodimers and heterodimers of five component proteins, which mediate different transcriptional responses and bind preferentially to different DNA sequences. Crystal structures of DNA complexes show that the dimers of the Rel-homology regions are structurally very similar.
View Article and Find Full Text PDFHigh Mobility Group Protein A1a (HMGA1a) is a highly abundant nuclear protein, which plays a crucial role during embryogenesis, cell differentiation, and neoplasia. Here, we present the first ever NMR-based structural ensemble of full length HMGA1a. Our results show that the protein is not completely random coil but adopts a compact structure consisting of transient long-range contacts, which is regulated by post-translational phosphorylation.
View Article and Find Full Text PDFBackground: Protein tyrosine phosphatase PTPN13, also known as PTP-BL in mice, is a large multi-domain non-transmembrane scaffolding protein with a molecular mass of 270 kDa. It is involved in the regulation of several cellular processes such as cytokinesis and actin-cytoskeletal rearrangement. The modular structure of PTPN13 consists of an N-terminal KIND domain, a FERM domain, and five PDZ domains, followed by a C-terminal protein tyrosine phosphatase domain.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2019
Folding and insertion of β-barrel membrane proteins into native membranes is efficiently catalyzed by β-barrel assembly machineries. Understanding this catalysis requires a detailed description of the corresponding uncatalyzed folding mechanisms, which however have so far remained largely unclear. Herein, the folding and membrane insertion of the E.
View Article and Find Full Text PDFProtein tyrosine phosphatase PTPN13, also known as PTP-BL in mice, represents a large multi-domain non-transmembrane scaffolding protein that contains five consecutive PDZ domains. Here, we report the solution structures of the extended murine PTPN13 PDZ3 domain in its apo form and in complex with its physiological ligand, the carboxy-terminus of protein kinase C-related kinase-2 (PRK2), determined by multidimensional NMR spectroscopy. Both in its ligand-free state and when complexed to PRK2, PDZ3 of PTPN13 adopts the classical compact, globular D/E fold.
View Article and Find Full Text PDFThe Melanoma Inhibitory Activity (MIA) protein is strongly expressed and secreted by malignant melanoma cells and was shown to promote melanoma development and invasion. The MIA protein was the first extracellular protein shown to adopt an Src homology 3 (SH3) domain-like fold in solution that can bind to fibronectin type III domains. Together with MIA, the homologous proteins OTOR (or FDP), MIA-2, and TANGO (or MIA-3) constitute a protein family of non-cytosolic and - except for fulllength TANGO and TANGO1-like (TALI) - extracellular SH3-domain containing proteins.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2016
Daptomycin is a highly efficient last-resort antibiotic that targets the bacterial cell membrane. Despite its clinical importance, the exact mechanism by which daptomycin kills bacteria is not fully understood. Different experiments have led to different models, including () blockage of cell wall synthesis, () membrane pore formation, and () the generation of altered membrane curvature leading to aberrant recruitment of proteins.
View Article and Find Full Text PDFAnimal venoms, such as those from scorpions, are a potent source for new pharmacological substances. In this study we have determined the structure of the α-KTx3.8 (named as Bs6) scorpion toxin by multidimensional (1)H homonuclear NMR spectroscopy and investigated its function by molecular dynamics (MD) simulations and electrophysiological measurements.
View Article and Find Full Text PDFThe lantibiotic NAI-107 is active against Gram-positive bacteria including vancomycin-resistant enterococci and methicillin-resistant Staphylococcus aureus. To identify the molecular basis of its potency, we studied the mode of action in a series of whole cell and in vitro assays and analyzed structural features by nuclear magnetic resonance (NMR). The lantibiotic efficiently interfered with late stages of cell wall biosynthesis and induced accumulation of the soluble peptidoglycan precursor UDP-N-acetylmuramic acid-pentapeptide (UDP-MurNAc-pentapeptide) in the cytoplasm.
View Article and Find Full Text PDFMersacidin, gallidermin, and nisin are lantibiotics, antimicrobial peptides containing lanthionine. They show potent antibacterial activity. All three interfere with cell wall biosynthesis by binding lipid II, but they display different levels of interaction with the cytoplasmic membrane.
View Article and Find Full Text PDF