Parkinson's disease (PD) progresses with the loss of dopaminergic neurons in the substantia nigra pars compacta region of the brain. The superior mechanisms and the cause of this specific localized neurodegeneration is currently unknown. However, experimental evidence indicates a link between PD progression and reactive oxygen species with imbalanced metal homeostasis.
View Article and Find Full Text PDFParkinson´s disease progression is linked to iron redox status homeostasis via reactive oxygen species (ROS) formation, and lipids are the primary targets of ROS. The determination of iron redox status is challenging and requires specific extraction methods, which are so far tedious and very time-consuming. We demonstrated a novel, faster, and less laborious extraction method using the chelator ethylene glycol l-bis(β-aminoethyl ether)-N,N,N',N'-tetra acetic acid (EGTA) as a stabilizing agent and synthetic quartz beads for homogenization under an argon atmosphere.
View Article and Find Full Text PDFSelenium (Se) is known to contribute to several vital physiological functions in mammals: antioxidant defense, fertility, thyroid hormone metabolism, and immune response. Growing evidence indicates the crucial role of Se and Se-containing selenoproteins in the brain and brain function. As for the other essential trace elements, dietary Se needs to reach effective concentrations in the central nervous system (CNS) to exert its functions.
View Article and Find Full Text PDF