Publications by authors named "Bastian B Skjelstad"

Electrides, in which anionic electrons are localized independently of the atoms in the compound, have shown promise, especially as catalysts and optoelectronic materials. Here, we present a new computationally designed molecular electride, Li@calix[3]pyrrole (Li@C3P). Electron density and electron localization function analyses unequivocally confirm the existence of localized electride electron density, outside the system, independent of any specific atoms.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) have attracted significant attention over the past 2 decades due to their wide applicability as functional materials. However, targeted synthesis of novel MOFs remains problematic as their formation mechanisms are poorly understood, which forces us to rely on serendipity in the synthesis of novel MOFs. Here, we demonstrate a workflow employing the artificial force induced reaction (AFIR) method to investigate the self-assembly process of the node of the SIFSIX-3-Zn MOF, [Zn(pyz)(SiF)] (pyz = pyrazine), in an automated manner.

View Article and Find Full Text PDF

High-valent multimetallic-oxo/oxyl species have been implicated as intermediates in oxidative catalysis involving proton-coupled electron transfer (PCET) reactions, but the reactive nature of these oxo species has hindered the development of an in-depth understanding of their mechanisms and multimetallic character. The mechanism of C-H oxidation by previously reported RuCoO cubane complexes bearing a terminal Ru-oxo ligand, with significant oxyl radical character, was investigated. The rate-determining step involves H atom abstraction (HAA) from an organic substrate to generate a Ru-OH species and a carbon-centered radical.

View Article and Find Full Text PDF

We report the transition metal quantum mechanics (tmQM) data set, which contains the geometries and properties of a large transition metal-organic compound space. tmQM comprises 86,665 mononuclear complexes extracted from the Cambridge Structural Database, including Werner, bioinorganic, and organometallic complexes based on a large variety of organic ligands and 30 transition metals (the 3d, 4d, and 5d from groups 3 to 12). All complexes are closed-shell, with a formal charge in the range {+1, 0, -1}.

View Article and Find Full Text PDF

High-valent oxocobalt(IV) species have been invoked as key intermediates in oxidative catalysis, but investigations into the chemistry of proton-coupled redox reactions of such species have been limited. Herein, the reactivity of an established water oxidation catalyst, [CoO(OAc)(py)][PF], toward H-atom abstraction reactions is described. Mechanistic analyses and density functional theory (DFT) calculations support a concerted proton-electron transfer (CPET) pathway in which the high energy intermediates formed in stepwise pathways are bypassed.

View Article and Find Full Text PDF

The self-assembly of an amide-functionalized dithienyldiketopyrrolopyrrole (DPP) dye in aqueous media was achieved through seed-initiated supramolecular polymerization. Temperature- and time-dependent studies showed that the spontaneous polymerization of the DPP derivative was temporally delayed upon cooling the monomer solution in a methanol/water mixture. Theoretical calculations revealed that an amide-functionalized DPP derivative adopts an energetically favorable folded conformation in the presence of water molecules due to hydration.

View Article and Find Full Text PDF