Publications by authors named "Bastian A de Mol"

Introduction: Gaseous microemboli that originate from the cardiopulmonary bypass circuit may contribute to adverse outcome after cardiac surgery. We prospectively evaluated the influence of gaseous microemboli on the release of various biomarkers after use of a minimally invasive extracorporeal technology system.

Methods: In 70 patients undergoing coronary artery bypass grafting with minimized cardiopulmonary bypass, gaseous microemboli were measured intraoperatively with a bubble counter.

View Article and Find Full Text PDF

Introduction: Gaseous microemboli (GME) introduced during cardiac surgery are considered as a potential source of morbidity, which has driven the development of the first bubble counters. Two new generation bubble counters, introduced in the early 2000s, claim correct sizing and counting of GME. This in-vitro study aims to validate the accuracy of two bubble counters using monodisperse bubbles in a highly controlled setting at low GME concentrations.

View Article and Find Full Text PDF

Recently, an oxygenator with an integrated centrifugal blood pump (IP) was designed to minimize priming volume and to reduce blood foreign surface contact even further. The use of this oxygenator with or without integrated arterial filter was compared with a conventional oxygenator and nonintegrated centrifugal pump. To compare the air removal characteristics 60 patients undergoing coronary artery bypass grafting were alternately assigned into one of three groups to be perfused with a minimized extracorporeal circuit either with the conventional oxygenator, the oxygenator with IP, or the oxygenator with IP plus integrated arterial filter (IAF).

View Article and Find Full Text PDF

Gaseous microemboli (GME) may originate from the extracorporeal circuit and enter the arterial circulation of the patient. GME are thought to contribute to cerebral deficit and to adverse outcome after cardiac surgery. The arterial filter is a specially designed component for removing both gaseous and solid microemboli.

View Article and Find Full Text PDF

During cardiopulmonary bypass (CPB), gaseous microemboli (GME) are released into the patients' arterial bloodstream. Gaseous microemboli may contribute to the adverse outcome after cardiac surgery. Recently, two oxygenator models with or without integrated arterial filter (IAF) were designed and only differ in size, leading to a change of 20% in surface area of the hollow fibers and 25% in blood velocities.

View Article and Find Full Text PDF