Publications by authors named "Bastiaan Bargmann"

Single-cell RNA sequencing (scRNA-seq) is widely used in plant biology and is a powerful tool for studying cell identity and differentiation. However, the scarcity of known cell-type marker genes and the divergence of marker expression patterns limit the accuracy of cell-type identification and our capacity to investigate cell-type conservation in many species. To tackle this challenge, we devise a novel computational strategy called Orthologous Marker Gene Groups (OMGs), which can identify cell types in both model and non-model plant species and allows for rapid comparison of cell types across many published single-cell maps.

View Article and Find Full Text PDF

Introduction: Throughout domestication, crop plants have gone through strong genetic bottlenecks, dramatically reducing the genetic diversity in today's available germplasm. This has also reduced the diversity in traits necessary for breeders to develop improved varieties. Many strategies have been developed to improve both genetic and trait diversity in crops, from backcrossing with wild relatives, to chemical/radiation mutagenesis, to genetic engineering.

View Article and Find Full Text PDF

, soybean, is an abundantly cultivated crop worldwide. Efforts have been made over the past decades to improve soybean production in traditional and organic agriculture, driven by growing demand for soybean-based products. Rapid canopy cover development (RCC) increases soybean yields and suppresses early-season weeds.

View Article and Find Full Text PDF

The TARGET system allows for the rapid identification of direct regulated gene targets of transcription factors (TFs). It employs the transient transformation of plant protoplasts with inducible nuclear entry of the TF and subsequent transcriptomic and/or ChIP-seq analysis. The ability to separate direct TF-target gene regulatory interactions from indirect downstream responses and the significantly shorter amount of time required to perform the assay, compared to the generation of transgenics, make this plant cell-based approach a valuable tool for a higher throughput approach to identify the genome-wide targets of multiple TFs, to build validated transcriptional networks in plants.

View Article and Find Full Text PDF

Like other complex multicellular organisms, plants are composed of different cell types with specialized shapes and functions. For example, most laminar leaves consist of multiple photosynthetic cell types. These cell types include the palisade mesophyll, which typically forms one or more cell layers on the adaxial side of the leaf.

View Article and Find Full Text PDF

Background: Regeneration of fertile plants from tissue culture is a critical bottleneck in the application of new plant breeding technologies. Ectopic overexpression of morphogenic factors is a promising workaround for this hurdle.

Methods: Conditional overexpression of and Δ was used to study the effect of timing the overexpression of these morphogenic factors during shoot regeneration from root explants in Arabidopsis.

View Article and Find Full Text PDF

The development of gene-editing technology holds tremendous potential for accelerating crop trait improvement to help us address the need to feed a growing global population. However, the delivery and access of gene-editing tools to the host genome and subsequent recovery of successfully edited plants form significant bottlenecks in the application of new plant breeding technologies. Moreover, the methods most suited to achieve a desired outcome vary substantially, depending on species' genotype and the targeted genetic changes.

View Article and Find Full Text PDF

Anthocyanins are pigmented secondary metabolites produced via the flavonoid biosynthetic pathway and play important roles in plant stress responses, pollinator attraction, and consumer preference. Using RNA-sequencing analysis of a cross between diploid potato ( L.) lines segregating for flower color, we identified a homolog of the () gene family that encodes a MYB transcription factor, herein termed , as the regulator of anthocyanin production in potato corollas.

View Article and Find Full Text PDF

Sensory perception of light is mediated by specialized Photoreceptor neurons (PRs) in the eye. During development all PRs are genetically determined to express a specific Rhodopsin (Rh) gene and genes mediating a functional phototransduction pathway. While the genetic and molecular mechanisms of PR development is well described in the adult compound eye, it remains unclear how the expression of Rhodopsins and the phototransduction cascade is regulated in other visual organs in Drosophila, such as the larval eye and adult ocelli.

View Article and Find Full Text PDF

Reprogramming of cell identities during development frequently requires changes in the chromatin state that need to be restricted to the correct cell populations. Here we identify an auxin hormone-regulated chromatin state switch that directs reprogramming from transit amplifying to primordium founder cell fate in Arabidopsis inflorescences. Upon auxin sensing, the MONOPTEROS transcription factor recruits SWI/SNF chromatin remodeling ATPases to increase accessibility of the DNA for induction of key regulators of flower primordium initiation.

View Article and Find Full Text PDF

Plant genomes encode large numbers of F-box proteins (FBPs), the substrate recognition subunit of SKP1-CULLIN-F-box (SCF) ubiquitin ligases. There are ~700 FBPs in , most of which are uncharacterized. TIR1 is among the best-studied plant FBPs and functions as a receptor for the plant hormone auxin.

View Article and Find Full Text PDF

Stomata mediate gas exchange between the inter-cellular spaces of leaves and the atmosphere. CO2 levels in leaves (Ci) are determined by respiration, photosynthesis, stomatal conductance and atmospheric [CO2 ]. [CO2 ] in leaves mediates stomatal movements.

View Article and Find Full Text PDF

Developmental transitions can be described in terms of morphology and the roles of individual genes, but also in terms of global transcriptional and epigenetic changes. Temporal dissections of transcriptome changes, however, are rare for intact, developing tissues. We used RNA sequencing and microarray platforms to quantify gene expression from labeled cells isolated by fluorescence-activated cell sorting to generate cell-type-specific transcriptomes during development of an adult stem-cell lineage in the Arabidopsis leaf.

View Article and Find Full Text PDF

The dynamic nature of gene regulatory networks allows cells to rapidly respond to environmental change. However, the underlying temporal connections are missed, even in kinetic studies, as transcription factor (TF) binding within at least one time point is required to identify primary targets. The TF-regulated but unbound genes are dismissed as secondary targets.

View Article and Find Full Text PDF

Auxin signaling through the SCF(TIR1)-Aux/IAA-ARF pathway is one of the best-studied plant hormone response pathways. Components of this pathway, from receptors through to transcription factors, have been identified and analyzed in detail. Although we understand elementary aspects of how the auxin signal is perceived and leads to a transcriptional response, many questions remain about the in vivo function of the pathway.

View Article and Find Full Text PDF

We present a lab that enables students to test the role of genes involved in the regulation of lateral roots growth in the model plant Arabidopsis thaliana. Here, students design an experiment that follows the effects of the hormone auxin on the stimulation of genes involved in the formation of lateral root initials. These genes, known as lateral organ boundary domain containing protein (LBD) genes, are upregulated in the presence of auxin as part of a multistep molecular and biochemically controlled pathway.

View Article and Find Full Text PDF

In plants, changes in local auxin concentrations can trigger a range of developmental processes as distinct tissues respond differently to the same auxin stimulus. However, little is known about how auxin is interpreted by individual cell types. We performed a transcriptomic analysis of responses to auxin within four distinct tissues of the Arabidopsis thaliana root and demonstrate that different cell types show competence for discrete responses.

View Article and Find Full Text PDF

Fluorescence-activated cell sorting (FACS) provides a rapid means of isolating large numbers of fluorescently tagged cells from a heterogeneous mixture of cells. Collections of transgenic plants with cell type-specific expression of fluorescent marker genes such as green fluorescent protein (GFP) are ideally suited for FACS-assisted studies of individual cell types. Here we describe the use of Arabidopsis and rice enhancer trap lines with tissue-specific GFP expression patterns in the root to isolate specific cell types of root tissues using FACS.

View Article and Find Full Text PDF

For the nematode Caenorhabditis elegans, automated selection of animals of specific genotypes from a mixed pool has become essential for genetic interaction or chemical screens. To date, such selection has been accomplished using specialized instruments. However, access to such dedicated equipment is not common.

View Article and Find Full Text PDF

High-resolution, cell type-specific analysis of gene expression greatly enhances understanding of developmental regulation and responses to environmental stimuli in any multicellular organism. In situ hybridization and reporter gene visualization can to a limited extent be used to this end but for high resolution quantitative RT-PCR or high-throughput transcriptome-wide analysis the isolation of RNA from particular cell types is requisite. Cellular dissociation of tissue expressing a fluorescent protein marker in a specific cell type and subsequent Fluorescence Activated Cell Sorting (FACS) makes it possible to collect sufficient amounts of material for RNA extraction, cDNA synthesis/amplification and microarray analysis.

View Article and Find Full Text PDF

Plants respond to wounding by means of a multitude of reactions, with the purpose of stifling herbivore assault. Phospholipase D (PLD) has previously been implicated in the wounding response. Arabidopsis (Arabidopsis thaliana) AtPLDalpha1 has been proposed to be activated in intact cells, and the phosphatidic acid (PA) it produces to serve as a precursor for jasmonic acid (JA) synthesis and to be required for wounding-induced gene expression.

View Article and Find Full Text PDF

Transient genetic modification of plant protoplasts is a straightforward and rapid technique for the study of numerous aspects of plant biology. Recent studies in metazoan systems have utilized cell-based assays to interrogate signal transduction pathways using high-throughput methods. Plant biologists could benefit from new tools that expand the use of cell culture for large-scale analysis of gene function.

View Article and Find Full Text PDF