Publications by authors named "Basten Snoek"

Background: Breeding of lettuce (Lactuca sativa L.), the most important leafy vegetable worldwide, for enhanced disease resistance and resilience relies on multiple wild relatives to provide the necessary genetic diversity. In this study, we constructed a super-pangenome based on four Lactuca species (representing the primary, secondary and tertiary gene pools) and comprising 474 accessions.

View Article and Find Full Text PDF
Article Synopsis
  • Natural populations of Arabidopsis thaliana, particularly from the Netherlands, were studied to understand how plants adapt to subtle environmental changes despite a generally mild climate.
  • The research identified key genetic variations, including mutations in the GA5 gene leading to semidwarf accessions with better wind tolerance and the FSD3 gene affecting iron deficiency tolerance.
  • The findings suggest that genetic diversity in this localized population is comparable to broader global collections, providing insights into the genetic mechanisms behind plant adaptation to environmental factors like drought and nutrient availability.
View Article and Find Full Text PDF
Article Synopsis
  • The plant hormone abscisic acid (ABA) plays a key role in regulating plant development and stress responses by triggering a complex gene regulatory network involving many transcription factors (TFs) and genes.
  • An RNA-seq time series identified 7151 differentially expressed genes in response to ABA treatment, which were organized into 44 coexpressed modules responsible for various biological functions.
  • The study further analyzed TF regulation and interaction within the ABA gene regulatory network, highlighting the significance of the bZIP TF family and identifying GT3a as a positive regulator of drought tolerance, validated by drought assays.
View Article and Find Full Text PDF

Metagenomic analysis typically includes read-based taxonomic profiling, assembly, and binning of metagenome-assembled genomes (MAGs). Here we integrate these steps in Read Annotation Tool (RAT), which uses robust taxonomic signals from MAGs and contigs to enhance read annotation. RAT reconstructs taxonomic profiles with high precision and sensitivity, outperforming other state-of-the-art tools.

View Article and Find Full Text PDF

Plant organs move throughout the diurnal cycle, changing leaf and petiole positions to balance light capture, leaf temperature, and water loss under dynamic environmental conditions. Upward movement of the petiole, called hyponasty, is one of several traits of the shade avoidance syndrome (SAS). SAS traits are elicited upon perception of vegetation shade signals such as far-red light (FR) and improve light capture in dense vegetation.

View Article and Find Full Text PDF

Regulation of gene expression plays a crucial role in developmental processes and adaptation to changing environments. expression quantitative trait locus (eQTL) mapping is a technique used to study the genetic regulation of gene expression using the transcriptomes of recombinant inbred lines (RILs). Typically, the age of the inbred lines at the time of RNA sampling is carefully controlled.

View Article and Find Full Text PDF

Aspergilli can be used to produce food but can spoil it as well. Both food production and spoilage are initiated by germination of the conidia of these fungi that have been introduced by inoculation and contamination, respectively. Germination of these spores includes activation, swelling, establishment of cell polarity, and formation of a germ tube.

View Article and Find Full Text PDF

Information processing is an essential part of biology, enabling coordination of intra-organismal processes such as development, environmental adaptation and inter-organismal communication. Whilst in animals with specialised brain tissue a substantial amount of information processing occurs in a centralised manner, most biological computing is distributed across multiple entities, such as cells in a tissue, roots in a root system or ants in a colony. Physical context, called embodiment, also affects the nature of biological computing.

View Article and Find Full Text PDF

Genetic perturbation in different genetic backgrounds can cause a range of phenotypes within a species. These phenotypic differences can be the result of the interaction between the genetic background and the perturbation. Previously, we reported that perturbation of gld-1, an important player in the developmental control of Caenorhabditis elegans, released cryptic genetic variation (CGV) affecting fitness in different genetic backgrounds.

View Article and Find Full Text PDF

Seeds are essential for plant reproduction, survival, and dispersal. Germination ability and successful establishment of young seedlings strongly depend on seed quality and on environmental factors such as nutrient availability. In tomato (Solanum lycopersicum) and many other species, seed quality and seedling establishment characteristics are determined by genetic variation, as well as the maternal environment in which the seeds develop and mature.

View Article and Find Full Text PDF

Plants deposit photosynthetically-fixed carbon in the rhizosphere, the thin soil layer directly around the root, thereby creating a hospitable environment for microbes. To manage the inhabitants of this nutrient-rich environment, plant roots exude and dynamically adjust microbe-attracting and -repelling compounds to stimulate specific members of the microbiome. Previously, we demonstrated that foliar infection of Arabidopsis thaliana by the biotrophic downy mildew pathogen Hyaloperonospora arabidopsidis (Hpa) leads to a disease-induced modification of the rhizosphere microbiome.

View Article and Find Full Text PDF

Although plants are immobile, many of their organs are flexible to move in response to environmental cues. In dense vegetation, plants detect neighbors through far-red light perception with their leaf tip. They respond remotely, with asymmetrical growth between the abaxial and adaxial sides of the leafstalk, the petiole.

View Article and Find Full Text PDF

Global warming and precipitation extremes (drought or increased precipitation) strongly affect plant primary production and thereby terrestrial ecosystem functioning. Recent syntheses show that combined effects of warming and precipitation extremes on plant biomass are generally additive, while individual experiments often show interactive effects, indicating that combined effects are more negative or positive than expected based on the effects of single factors. Here, we examined whether variation in biomass responses to single and combined effects of warming and precipitation extremes can be explained by plant growth form and community type.

View Article and Find Full Text PDF

Biodegradation of pollutants is a sustainable and cost-effective solution to groundwater pollution. Here, we investigate microbial populations involved in biodegradation of poly-contaminants in a pipeline for heavily contaminated groundwater. Groundwater moves from a polluted park to a treatment plant, where an aerated bioreactor effectively removes the contaminants.

View Article and Find Full Text PDF
Article Synopsis
  • Microbiomes are crucial for plant growth, but the genetic factors influencing their development are not well understood.
  • The study analyzes the rhizosphere microbiome in a variety of wild and domesticated tomatoes, identifying gene regions that influence which bacteria are recruited, including important genes related to iron and water regulation.
  • By combining microbiome research with plant genetics, the research highlights potential traits that could be used to improve plant-microbiome interactions in future breeding efforts.
View Article and Find Full Text PDF

Most ectotherms obey the temperature-size rule, meaning they grow larger in a colder environment. This raises the question of how the interplay between genes and temperature affects the body size of ectotherms. Despite the growing body of literature on the physiological life-history and molecular genetic mechanism underlying the temperature-size rule, the overall genetic architecture orchestrating this complex phenotype is not yet fully understood.

View Article and Find Full Text PDF

Genetic variation in host populations may lead to differential viral susceptibilities. Here, we investigate the role of natural genetic variation in the Intracellular Pathogen Response (IPR), an important antiviral pathway in the model organism against Orsay virus (OrV). The IPR involves transcriptional activity of 80 genes including the genes.

View Article and Find Full Text PDF

Functional changes of cells upon developmental switches and in response to environmental cues are often reflected in nuclear phenotypes, showing distinctive chromatin states corresponding to transcriptional changes. Such characteristic nuclear shapes have been microscopically monitored and can be quantified after differential staining of euchromatin and heterochromatin domains. Here, we examined several nuclear parameters (size, DNA content, DNA density, chromatin compaction, relative heterochromatin fraction (RHF), and number of chromocenters) in relation to spatial distribution of genes and transposon elements (TEs), using standard 2D fluorescence microscopy.

View Article and Find Full Text PDF

Plants detect neighboring competitors through a decrease in the ratio between red and far-red light (R:FR). This decreased R:FR is perceived by phytochrome photoreceptors and triggers shade avoidance responses such as shoot elongation and upward leaf movement (hyponasty). In addition to promoting elongation growth, low R:FR perception enhances plant susceptibility to pathogens: the growth-defense tradeoff.

View Article and Find Full Text PDF

Studying genetic variation of gene expression provides a powerful way to unravel the molecular components underlying complex traits. Expression quantitative trait locus (eQTL) studies have been performed in several different model species, yet most of these linkage studies have been based on the genetic segregation of two parental alleles. Recently, we developed a multiparental segregating population of 200 recombinant inbred lines (mpRILs) derived from four wild isolates (JU1511, JU1926, JU1931, and JU1941) in the nematode Caenorhabditis elegans.

View Article and Find Full Text PDF

Air is a major conduit for the dispersal of organisms at the local and the global scale. Most research has focused on the dispersal of plants, vertebrates and human disease agents. However, the air represents a key dispersal medium also for bacteria, fungi and protists.

View Article and Find Full Text PDF

Host-pathogen interactions play a major role in evolutionary selection and shape natural genetic variation. The genetically distinct strains, Bristol N2 and Hawaiian CB4856, are differentially susceptible to the Orsay virus (OrV). Here, we report the dissection of the genetic architecture of susceptibility to OrV infection.

View Article and Find Full Text PDF

WCS417 is a root-colonizing bacterium with well-established plant-beneficial effects. Upon colonization of roots, WCS417 evades local root immune responses while triggering an induced systemic resistance (ISR) in the leaves. The early onset of ISR in roots shows similarities with the iron deficiency response, as both responses are associated with the production and secretion of coumarins.

View Article and Find Full Text PDF

Temperature passively affects biological processes involved in plant growth. Therefore, it is challenging to study the dedicated temperature signalling pathways that orchestrate thermomorphogenesis, a suite of elongation growth-based adaptations that enhance leaf-cooling capacity. We screened a chemical library for compounds that restored hypocotyl elongation in the pif4-2-deficient mutant background at warm temperature conditions in Arabidopsis thaliana to identify modulators of thermomorphogenesis.

View Article and Find Full Text PDF