Publications by authors named "Bastard G"

We demonstrate experimentally nonequilibrium transport in unipolar quasi-1D hot electron devices reaching the ballistic limit at room temperature. The devices are realized with heterostructure engineering in nanowires to obtain dopant- and dislocation-free 1D-epitaxy and flexible bandgap engineering. We show experimentally the control of hot electron injection with a graded conduction band profile and the subsequent filtering of hot and relaxed electrons with rectangular energy barriers.

View Article and Find Full Text PDF

We present an investigation into the vertical transport through 13 different superlattice structures, where the well and barrier widths, doping concentration, dopant position, and contact layers were varied. Although superlattices have been extensively studied since 1970, there is a lack of publications on transport through superlattices similarly low doped as THz quantum cascade lasers (QCLs), for which the doping is in the 3-5×10^{10}  cm^{-2} range. The superlattices presented are doped in the same range as THz QCLs, with contact layers and fabrication comparable to high-temperature THz QCLs.

View Article and Find Full Text PDF

Due to rapid urbanization and high food prices and in the absence of nutrition programs, school children from urban areas in West Africa often have insufficient and inadequate diet leading to nutrient deficiencies that affect their health and schooling performance. Acute malnutrition and micronutrient deficiencies are prevalent in children from primary state schools of Dakar (Senegal). The objectives of the present study were to assess the overall diet of these children, to report insufficient/excessive energy and nutrient intakes and to investigate association between insufficient nutrient intake and micronutrient deficiencies.

View Article and Find Full Text PDF

We propose a method for performing terahertz spectroscopy on nanometer (nm)-scale systems by using metal nanogap electrodes. Intersublevel transition spectra of single self-assembled InAs quantum dots (QDs) have been measured with high signal/noise ratios by using a single electron transistor geometry that consists of a QD and nanogap metal electrodes as a terahertz detector. Photocurrent distribution with respect to the Coulomb diamonds indicates that there are two mechanisms for the photocurrent generation.

View Article and Find Full Text PDF

Background: Urban areas in West Africa are not immune to undernutrition with recent urbanization and high food prices being important factors. School children often have a poor nutritional status, potentially affecting their health and schooling performance. Yet, generally school children do not benefit from nutrition programs.

View Article and Find Full Text PDF

Carrier relaxation is a key issue in determining the efficiency of semiconductor optoelectronic device operation. Devices incorporating semiconductor quantum dots have the potential to overcome many of the limitations of quantum-well-based devices because of the predicted long quantum-dot excited-state lifetimes. For example, the population inversion required for terahertz laser operation in quantum-well-based devices (quantum-cascade lasers) is fundamentally limited by efficient scattering between the laser levels, which form a continuum in the plane of the quantum well.

View Article and Find Full Text PDF

Major depression is associated with an excessive self-focus, a tendency to engage oneself in self-referential processing. The medial frontal gyrus (MFG) is central to self-referential processing. This study aimed to explore the neural bases of this excessive self-focus and to disambiguate the role of the MFG in the pathophysiology of major depression.

View Article and Find Full Text PDF

Context: According to meta-analyses, depression is associated with a smaller hippocampus. Most magnetic resonance imaging (MRI) studies among middle aged acute depressed patients are based on manual segmentation of the hippocampus. Few studies used automated methods such as voxel-based morphometry (VBM) or automated segmentation that can overcome certain drawbacks of manual segmentation (essentially intra- and inter-rater variability and operator time consumption).

View Article and Find Full Text PDF

Background: Depression is characterized by cognitive impairments, including executive dysfunctions. These executive deficits could reflect impairments of more basic executive processes, such as updating, set shifting and inhibition. While shifting and inhibition impairments are often reported, studies on depression have been somewhat obscure about specific deficits of the updating process.

View Article and Find Full Text PDF

Depression is usually associated with episodic memory impairment. The main clinical features of depression associated with that memory impairment are not clearly defined. The main goal of that study was to assess the role of the diagnostic subtypes and the number of depressive episodes on the memory performance of acute unipolar (UP) and bipolar (BP) depressed patients.

View Article and Find Full Text PDF

We show that the spin state of the resident electron in an n-doped self-assembled InAs-GaAs quantum dot can be written and read using nonresonant, circularly polarized optical pumping. A simple theoretical model is presented and accounts for the remarkable dynamics producing counterpolarized photoluminescence.

View Article and Find Full Text PDF

We consider theoretically the role of crossed transitions on the interband optical properties of quantum dots. These transitions, which involve one bound state and one delocalized state, are inherent to the joint nature of the valence-to-conduction density of states in quantum dots. We show that they play a crucial role both on the interband absorption and on the broadening of the quantum dot lines.

View Article and Find Full Text PDF

The discretization of the electronic spectrum in semiconductor quantum dots implies a strong coupling behavior between the optical phonons and the electron-hole pairs, despite the fact that a pair is electrically neutral. The excitonic polarons strongly modify the optical spectra. In particular, the ground excitonic polaron contains one or two phonon components, which leads to the existence of phonon replicas in the luminescence.

View Article and Find Full Text PDF