Background And Purpose: In proton therapy, a relative biological effectiveness (RBE) of 1.1 is used toreach an isoeffective biological response between photon and proton doses. However, the RBE varies with biological endpoints and linear energy transfer (LET), two key parameters in radiotherapy.
View Article and Find Full Text PDFBackground: For proton therapy, a relative biological effectiveness (RBE) of 1.1 is widely applied clinically. However, due to abundant evidence of variable RBE in vitro, and as suggested in studies of patient outcomes, RBE might increase by the end of the proton tracks, as described by several proposed variable RBE models.
View Article and Find Full Text PDFThis work investigates the use of passive luminescence detectors to determine different types of averaged linear energy transfer (LET-) for the energies relevant to proton therapy. The experimental results are compared to reference values obtained from Monte Carlo simulations.Optically stimulated luminescence detectors (OSLDs), fluorescent nuclear track detectors (FNTDs), and two different groups of thermoluminescence detectors (TLDs) were irradiated at four different radiation qualities.
View Article and Find Full Text PDFSpatially Fractionated Radiotherapy (SFRT) has demonstrated promising potential in cancer treatment, combining the advantages of reduced post-radiation effects and enhanced local control rates. Within this paradigm, proton minibeam radiotherapy (pMBRT) was suggested as a new treatment modality, possibly producing superior normal tissue sparing to conventional proton therapy, leading to improvements in patient outcomes. However, an effective and convenient beam generation method for pMBRT, capable of implementing various optimum dose profiles, is essential for its real-world application.
View Article and Find Full Text PDFWe study the photophysics of molecular aggregates from a quantum optics perspective, with emphasis on deriving scaling laws for the fast nonradiative relaxation of collective electronic excitations, referred to as Kasha's rule. Aggregates exhibit an energetically broad manifold of collective states with delocalized electronic excitations originating from near-field dipole-dipole exchanges between neighboring monomers. Photoexcitation at optical wavelengths, much larger than the monomer-monomer average separation, addresses almost exclusively symmetric collective states, which for an arrangement known as H-aggregate show an upward hypsochromic shift.
View Article and Find Full Text PDFBackground: Radiobiological experimental setups are challenged by precise sample positioning along depth dose profile, scattering conditions, and practical difficulties that must be addressed in individual designs. The aim of this study was to produce cell survival curves with several irradiation modalities, by using a setup designed at the Danish Centre for Particle Therapy (DCPT) for in vitro proton irradiations using a horizontal beam line and thereby evaluating the setups use for in vitro irradiations experiments.
Materials And Methods: The setup is a water phantom suitable for in vitro research with multiple irradiation modalities, in particular the pencil scanning proton beam available from a horizontal experimental beamline.
Quantum metasurfaces, i.e., two-dimensional subwavelength arrays of quantum emitters, can be employed as mirrors towards the design of hybrid cavities, where the optical response is given by the interplay of a cavity-confined field and the surface modes supported by the arrays.
View Article and Find Full Text PDFBackground: The purpose of this study was to introduce an experimental radiobiological setup used for irradiation of a mouse leg target in multiple positions along a proton beam path to investigate normal tissue- and tumor models with varying linear energy transfer (LET). We describe the dosimetric characterizations and an acute- and late-effect assay for normal tissue damage.
Methods: The experimental setup consists of a water phantom that allows the right hind leg of three to five mice to be irradiated at the same time.
Mesothelin (MSLN) is an attractive immuno-oncology target, but the development of MSLN-targeting therapies has been impeded by tumor shedding of soluble MSLN (sMSLN), on-target off-tumor activity, and an immunosuppressive tumor microenvironment. We sought to engineer an antibody-based, MSLN-targeted T-cell engager (αMSLN/αCD3) with enhanced ability to discriminate high MSLN-expressing tumors from normal tissue, and activity in the presence of sMSLN. We also studied the antitumor efficacy of this molecule (NM28-2746) alone and in combination with the multifunctional checkpoint inhibitor/T-cell co-activator NM21-1480 (αPD-L1/α4-1BB).
View Article and Find Full Text PDFThis work investigates the use of AlO:C and AlO:C,Mg optically stimulated luminescence (OSL) detectors to determine both the dose and the radiation quality in light ion beams. The radiation quality is here expressed through either the linear energy transfer (LET) or the closely related metric, which depends on the particle's speed and effective charge. The derived LET andvalues are applied to improve the dosimetry in light ion beams.
View Article and Find Full Text PDF•Improvement of therapeutic ratio by novel unconventional radiotherapy approaches.•Immunomodulation using high-dose spatially fractionated radiotherapy.•Boosting radiation anti-tumor effects by adding an immune-mediated cell killing.
View Article and Find Full Text PDFWe describe applications of two-dimensional subwavelength quantum emitter arrays as efficient optical elements in the linear regime. For normally incident light, the cooperative optical response, stemming from emitter-emitter dipole exchanges, allows the control of the array's transmission, its resonance frequency, and bandwidth. Operations on fully polarized incident light, such as generic linear and circular polarizers as well as phase retarders can be engineered and described in terms of Jones matrices.
View Article and Find Full Text PDFBackground: For proton therapy, a relative biological effectiveness (RBE) of 1.1 has broadly been applied clinically. However, as unexpected toxicities have been observed by the end of the proton tracks, variable RBE models have been proposed.
View Article and Find Full Text PDFPY blockade improves patient outcomes after myocardial infarction. As well as antithrombotic effects, anti-inflammatory effects may contribute to this beneficial clinical outcome. Here we aimed to identify potential anti-inflammatory effects of PY receptor blockers on monocytes and macrophages.
View Article and Find Full Text PDFLinear Energy Transfer (LET) is widely used to express the radiation quality of ion beams, when characterizing the biological effectiveness. However, averaged LET may be defined in multiple ways, and the chosen definition may impact the resulting reported value. We review averaged LET definitions found in the literature, and quantify which impact using these various definitions have for different reference setups.
View Article and Find Full Text PDFThe monocyte β-integrin Mac-1 is crucial for leukocyte-endothelium interaction, rendering it an attractive therapeutic target for acute and chronic inflammation. Using phage display, a Designed-Ankyrin-Repeat-Protein (DARPin) was selected as a novel binding protein targeting and blocking the α I-domain, an activation-specific epitope of Mac-1. This DARPin, named F7, specifically binds to activated Mac-1 on mouse and human monocytes as determined by flow cytometry.
View Article and Find Full Text PDFPurpose: Conventional X-ray radiotherapy induces a pro-inflammatory response mediated by altered expression of inflammation-regulating cytokines. Proton scanning and X-ray irradiation produce distinct changes to cytokine gene expression in vitro suggesting that proton beam therapy may induce an inflammatory response dissimilar to that of X-ray radiation. The purpose of the present study was to determine whether proton scanning beam radiation and conventional X-ray photon radiation would induce differential regulation of circulating cytokines in vivo.
View Article and Find Full Text PDFThe ion recombination is examined in parallel-plate ionization chambers in scanning proton beams at the Danish Centre for Particle Therapy and the Skandion Clinic. The recombination correction factor k is investigated for clinically relevant energies between 70 MeV and 244 MeV for dose rates below 400 Gy min in air. The Boutillon formalism is used to separate the initial and general recombination.
View Article and Find Full Text PDFPurpose: The dose response of Gafchromic EBT3 films exposed to proton beams depends on the dose, and additionally on the beam quality, which is often quantified with the linear energy transfer (LET) and, hence, also referred to as LET quenching. Fundamentally different methods to determine correction factors for this LET quenching effect have been reported in literature and a new method using the local proton fluence distribution differential in LET is presented. This method was exploited to investigate whether a more practical correction based on the dose- or fluence-averaged LET is feasible in a variety of clinically possible beam arrangements.
View Article and Find Full Text PDFActin filaments are highly dynamic structures involved in many cellular processes including cell-to-cell/substrate association and cell motility. The actin cytoskeleton is tightly regulated by actin-binding proteins, which include the members of the ADF (actin-depolymerizing factor)/cofilin family. The members of the LIM kinase family of proteins (LIMK1 and 2) regulate actin dynamics by controlling the binding affinity of ADF/cofilin towards actin.
View Article and Find Full Text PDFBackground: Microvesicles (MVs) are small cell-derived vesicles, which are mainly released by activated cells. They are part of a communication network delivering biomolecules, for example, inflammatory molecules, via the blood circulation to remote cells in the body. Platelet-derived MVs are known to induce vascular inflammation.
View Article and Find Full Text PDFActin is highly abundant in platelets, and its function is dependent on its structure. Actin filaments (F-actin) are dynamic structures involved in many cellular processes including platelet shape changes and adhesion. The actin cytoskeleton is tightly regulated by actin-binding proteins, which include members of the actin depolymerising factor (ADF)/cofilin family.
View Article and Find Full Text PDFIonization quenching in ion beam dosimetry is often related to the fluence- or dose-averaged linear energy transfer (LET). Both quantities are however averaged over a wide LET range and a mixed field of primary and secondary ions. We propose a novel method to correct the quenched luminescence in scintillators exposed to ion beams.
View Article and Find Full Text PDFRadiotherapy beams of protons or heavier ions generate secondary particles through nuclear interactions over different patient tissues. The resulting particle spectra depend on the tissue composition and on charge and energy of the primary beam ions. In proton radiotherapy, predictive radiobiological models usually apply dose-averaged linear energy transfer (LET).
View Article and Find Full Text PDF