We assess the potential of detecting cortical laminar patterns and areal borders by directly clustering voxel values of microstructural parameters derived from high-resolution mean apparent propagator (MAP) magnetic resonance imaging (MRI), as an alternative to conventional template-warping-based cortical parcellation methods. We acquired MAP-MRI data with 200m resolution in a fixed macaque monkey brain. To improve the sensitivity to cortical layers, we processed the data with a local anisotropic Gaussian filter determined voxel-wise by the plane tangent to the cortical surface.
View Article and Find Full Text PDFWater exchange is increasingly recognized as an important biological process that can affect the study of biological tissue using diffusion MR. Methods to measure exchange, however, remain immature as opposed to those used to characterize restriction, with no consensus on the optimal pulse sequence(s) or signal model(s). In general, the trend has been towards data-intensive fitting of highly parameterized models.
View Article and Find Full Text PDFWater exchange is increasingly recognized as an important biological process that can affect the study of biological tissue using diffusion MR. Methods to measure exchange, however, remain immature as opposed to those used to characterize restriction, with no consensus on the optimal pulse sequence (s) or signal model (s). In general, the trend has been towards data-intensive fitting of highly parameterized models.
View Article and Find Full Text PDFThe organization of hyaluronic acid (HA) solutions was investigated by small angle neutron scattering (SANS). It was demonstrated that HA formed clusters greater than several hundred nanometers. The SANS response revealed a weak correlation peak, corresponding to ordering over a distance scale of about 80 nm.
View Article and Find Full Text PDFMeasures of physical growth, such as weight and height have long been the predominant outcomes for monitoring child health and evaluating interventional outcomes in public health studies, including those that may impact neurodevelopment. While physical growth generally reflects overall health and nutritional status, it lacks sensitivity and specificity to brain growth and developing cognitive skills and abilities. Psychometric tools, e.
View Article and Find Full Text PDFProteoglycans are hierarchically organized structures that play an important role in the hydration and the compression resistance of cartilage matrix. In this study, the static and dynamic properties relevant to the biomechanical function of cartilage are determined at different levels of the hierarchical structure, using complementary osmotic pressure, neutron scattering (SANS) and light scattering (DLS) measurements. In cartilage proteoglycans (PGs), two levels of bottlebrush structures can be distinguished: the aggrecan monomer, which consists of a core protein to which are tethered charged glycosaminoglycan (GAG) chains, and complexes formed of the aggrecan monomers attached around a linear hyaluronic acid backbone.
View Article and Find Full Text PDFA comprehensive three-dimensional digital brain atlas of cortical and subcortical regions based on MRI and histology has a broad array of applications in anatomical, functional, and clinical studies. We first generated a Subcortical Atlas of the Marmoset, called the "SAM," from 251 delineated subcortical regions (e.g.
View Article and Find Full Text PDFImaging the live human brain at the mesoscopic scale is a desideratum in basic and clinical neurosciences. Despite the promise of diffusion MRI, the lack of an accurate model relating the measured signal and the associated microstructure has hampered its success. The widely used diffusion tensor MRI (DTI) model assumes an anisotropic Gaussian diffusion process in each voxel, but lacks the ability to capture intravoxel heterogeneity.
View Article and Find Full Text PDFPrevious studies reported that alternating electric fields (EFs) in the intermediate frequency (100-300 kHz) and low intensity (1-3 V/cm) regime - termed "Tumor Treating Fields" (TTFields) - have a specific, anti-proliferative effect on glioblastoma multiforme (GBM) cells. However, the mechanism(s) of action remain(s) incompletely understood, hindering the clinical adoption of treatments based on TTFields. To advance the study of such treatment , we developed an inductive device to deliver EFs to cell cultures which improves thermal and osmolar regulation compared to prior devices.
View Article and Find Full Text PDFPurpose: We report the design concept and fabrication of MRI phantoms, containing blocks of aligned microcapillaires that can be stacked into larger arrays to construct diameter distribution phantoms or fractured, to create a "powder-averaged" emulsion of randomly oriented blocks for vetting or calibrating advanced MRI methods, that is, diffusion tensor imaging, AxCaliber MRI, MAP-MRI, and multiple pulsed field gradient or double diffusion-encoded microstructure imaging methods. The goal was to create a susceptibility-matched microscopically anisotropic but macroscopically isotropic phantom with a ground truth diameter that could be used to vet advanced diffusion methods for diameter determination in fibrous tissues.
Methods: Two-photon polymerization, a novel three-dimensional printing method is used to fabricate blocks of capillaries.
A comprehensive three-dimensional digital brain atlas of cortical and subcortical regions based on MRI and histology has a broad array of applications for anatomical, functional, and clinical studies. We first generated a ubcortical tlas of the armoset, called the "SAM," from 251 delineated subcortical regions (e.g.
View Article and Find Full Text PDFHuman evolution has seen the development of higher-order cognitive and social capabilities in conjunction with the unique laminar cytoarchitecture of the human cortex. Moreover, early-life cortical maldevelopment has been associated with various neurodevelopmental diseases. Despite these connections, there is currently no noninvasive technique available for imaging the detailed cortical laminar structure.
View Article and Find Full Text PDFChronic traumatic encephalopathy is a neurodegenerative disease that is diagnosed and staged based on the localization and extent of phosphorylated tau pathology. Although its identification remains the primary diagnostic criteria to distinguish chronic traumatic encephalopathy from other tauopathies, the hyperphosphorylated tau that accumulates in neurofibrillary tangles in cortical grey matter and perivascular regions is often accompanied by concomitant pathology such as astrogliosis. Mean apparent propagator MRI is a clinically feasible diffusion MRI method that is suitable to characterize microstructure of complex biological media efficiently and comprehensively.
View Article and Find Full Text PDFSubcortical nuclei and other deep brain structures play essential roles in regulating the central and peripheral nervous systems. However, many of these nuclei and their subregions are challenging to identify and delineate in conventional MRI due to their small size, hidden location, and often subtle contrasts compared to neighboring regions. To address these limitations, we scanned the whole brain of the marmoset monkeys in ex vivo using a clinically feasible diffusion MRI method, called the mean apparent propagator (MAP)-MRI, along with T2W and MTR (T1-like contrast) images acquired at 7 Tesla.
View Article and Find Full Text PDFSmall angle neutron scattering (SANS) measurements are reported for DNA gels under near physiological conditions in which the concentration of monovalent and divalent counter-ions and the pH are varied. The scattering intensity () is described by a two-term equation, one due to osmotic concentration fluctuations and the other coming from static inhomogeneities frozen in by the cross-links. SANS in the low range indicates the presence of large clusters and the size of which exceeds the resolution of the experiment.
View Article and Find Full Text PDFSubcortical nuclei and other deep brain structures play essential roles in regulating the central and peripheral nervous systems. However, many of these nuclei and their subregions are challenging to identify and delineate in conventional MRI due to their small size, hidden location, and often subtle contrasts compared to neighboring regions. To address these limitations, we scanned the whole brain of the marmoset monkeys in using a clinically feasible diffusion MRI method, called the mean apparent propagator (MAP)-MRI, along with T2W and MTR (T1-like contrast) images acquired at 7 Tesla.
View Article and Find Full Text PDFTemporal synchrony of signals arriving from different neurons or brain regions is essential for proper neural processing. Nevertheless, it is not well understood how such synchrony is achieved and maintained in a complex network of time-delayed neural interactions. Myelin plasticity, accomplished by oligodendrocytes (OLs), has been suggested as an efficient mechanism for controlling timing in brain communications through adaptive changes of axonal conduction velocity and consequently conduction time delays, or latencies; however, local rules and feedback mechanisms that OLs use to achieve synchronization are not known.
View Article and Find Full Text PDFFor its size, the brain is the most metabolically active organ in the body. Most of its energy demand is used to maintain stable homeostatic physiological conditions. Altered homeostasis and active states are hallmarks of many diseases and disorders.
View Article and Find Full Text PDFNeural tissue microstructure plays an important role in developmental, physiological and pathophysiological processes. Diffusion tensor distribution (DTD) MRI helps probe subvoxel heterogeneity by describing water diffusion within a voxel using an ensemble of non-exchanging compartments characterized by a probability density function of diffusion tensors. In this study, we provide a new framework for acquiring multiple diffusion encoding (MDE) images and estimating DTD from them in the human brain in vivo.
View Article and Find Full Text PDFPrevious studies reported that alternating electric fields (EFs) in the intermediate frequency (100 - 300 kHz) and low intensity (1 - 3 V/cm) regime - termed "Tumor Treating Fields" (TTFields) - have a specific, anti-proliferative effect on glioblastoma multiforme (GBM) cells. However, the mechanism(s) of action remain(s) incompletely understood, hindering the clinical adoption of treatments based on TTFields. To advance the study of such treatment , we developed an inductive device to deliver EFs to cell cultures which improves thermal and osmolar regulation compared to prior devices.
View Article and Find Full Text PDFHigh-resolution imaging studies have consistently shown that in cortical tissue water diffuses preferentially along radial and tangential orientations with respect to the cortical surface, in agreement with histology. These dominant orientations do not change significantly even if the relative contributions from microscopic water pools to the net voxel signal vary across experiments that use different diffusion times, -values, TEs, and TRs. With this in mind, we propose a practical new framework for imaging non-parametric diffusion tensor distributions (DTDs) by constraining the microscopic diffusion tensors of the DTD to be diagonalized using the same orthonormal reference frame of the mesoscopic voxel.
View Article and Find Full Text PDFArticular cartilage is a composite hydrogel found in animal and human joints, which exhibits unique load-bearing properties that have been challenging to reproduce in synthetic materials and model in molecular dynamics (MD) simulations. We computationally investigate a composite hydrogel that mimics key functional properties of articular cartilage as a potential biomimetic model to investigate its unique load-bearing properties. Specifically, we find that the emergence of prestress in composite gels derives primarily from the stiffness of the polymer matrix and the asymmetry in the enthalpic interactions of the embedded particles and polymer matrix.
View Article and Find Full Text PDFThe variations in cellular composition and tissue architecture measured with histology provide the biological basis for partitioning the brain into distinct cytoarchitectonic areas and for characterizing neuropathological tissue alterations. Clearly, there is an urgent need to develop whole-brain neuroradiological methods that can assess cortical cyto- and myeloarchitectonic features non-invasively. Mean apparent propagator (MAP) MRI is a clinically feasible diffusion MRI method that quantifies efficiently and comprehensively the net microscopic displacements of water molecules diffusing in tissues.
View Article and Find Full Text PDFOwing to their great importance in materials science and other fields, we investigate the solution and osmotic properties of uncharged compact nanogel particles over a wide range of solvent quality and particle concentration by molecular dynamics (MD) simulations. We characterize the osmotic pressure by estimating the second and third virial coefficients, and by extension, we identify the -point where the second virial coefficient vanishes. Calculations of the structure factor indicate that these particles are similar to macrogels in that the particle-like scattering profile disappears at moderate concentrations.
View Article and Find Full Text PDF