Publications by authors named "Bassem Al Sady"

Heterochromatin plays a critical role in regulating gene expression and maintaining genome integrity. While structural and enzymatic components have been linked to heterochromatin establishment, a comprehensive view of the underlying pathways at diverse heterochromatin domains remains elusive. Here, we developed a systematic approach to identify factors involved in heterochromatin silencing at pericentromeres, subtelomeres and the silent mating type locus in Schizosaccharomyces pombe.

View Article and Find Full Text PDF

Heterochromatin formation in Schizosaccharomyces pombe requires the spreading of histone 3 (H3) Lysine 9 (K9) methylation (me) from nucleation centers by the H3K9 methylase, Suv39/Clr4, and the reader protein, HP1/Swi6. To accomplish this, Suv39/Clr4 and HP1/Swi6 have to associate with nucleosomes both nonspecifically, binding DNA and octamer surfaces and specifically, via recognition of methylated H3K9 by their respective chromodomains. However, how both proteins avoid competition for the same nucleosomes in this process is unclear.

View Article and Find Full Text PDF

Heterochromatic loci marked by histone H3 lysine 9 dimethylation (H3K9me2) are enriched at the nuclear periphery in metazoans, but the effect of spatial position on heterochromatin function has not been defined. Here, we remove three nuclear lamins and lamin B receptor (LBR) in mouse embryonic stem cells (mESCs) and show that heterochromatin detaches from the nuclear periphery. Mutant mESCs sustain naïve pluripotency and maintain H3K9me2 across the genome but cannot repress H3K9me2-marked genes or transposons.

View Article and Find Full Text PDF

Heterochromatin plays a critical role in regulating gene expression and maintaining genome integrity. While structural and enzymatic components have been linked to heterochromatin establishment, a comprehensive view of the underlying pathways at diverse heterochromatin domains remains elusive. Here, we developed a systematic approach to identify factors involved in heterochromatin silencing at pericentromeres, subtelomeres, and the silent mating type locus in .

View Article and Find Full Text PDF

Heterochromatin is a gene-repressive protein-nucleic acid ultrastructure that is initially nucleated by DNA sequences. However, following nucleation, heterochromatin can then propagate along the chromatin template in a sequence-independent manner in a reaction termed spreading. At the heart of this process are enzymes that deposit chemical information on chromatin, which attracts the factors that execute chromatin compaction and transcriptional or co/post-transcriptional gene silencing.

View Article and Find Full Text PDF
Article Synopsis
  • Heterochromatic gene silencing involves specific histone modifications, transcription presence, and RNA degradation, ensuring proper genome expression across cell divisions.
  • In fission yeast Schizosaccharomyces pombe, the Ccr4-Not complex plays a significant role in gene silencing and heterochromatin distribution at specific regions, like the mating type locus and subtelomeres.
  • Mutations in key Ccr4-Not components lead to issues in maintaining heterochromatin, but these problems can be resolved by removing the factor Epe1, highlighting the Ccr4-Not complex's importance in regulating gene silencing and spread.
View Article and Find Full Text PDF

Protein abundance is controlled at the transcriptional, translational and post-translational levels, and its regulatory principles are starting to emerge. Investigating these principles requires large-scale proteomics data and cannot just be done with transcriptional outcomes that are commonly used as a proxy for protein abundance. Here, we determine proteome changes resulting from the individual knockout of 3308 nonessential genes in the yeast Schizosaccharomyces pombe.

View Article and Find Full Text PDF

Heterochromatin spreading, the expansion of repressive chromatin structure from sequence-specific nucleation sites, is critical for stable gene silencing. Spreading re-establishes gene-poor constitutive heterochromatin across cell cycles but can also invade gene-rich euchromatin de novo to steer cell fate decisions. How chromatin context (i.

View Article and Find Full Text PDF

Heterochromatin formation requires three distinct steps: nucleation, self-propagation (spreading) along the chromosome, and faithful maintenance after each replication cycle. Impeding any of those steps induces heterochromatin defects and improper gene expression. The essential histone chaperone FACT (facilitates chromatin transcription) has been implicated in heterochromatin silencing, but the mechanisms by which FACT engages in this process remain opaque.

View Article and Find Full Text PDF

Unique among metazoan repressive histone methyltransferases, G9a and GLP, which chiefly target histone 3 lysine 9 (H3K9), require dimerization for productive H3K9 mono (me1)- and dimethylation (me2) in vivo. Intriguingly, even though each enzyme can independently methylate H3K9, the predominant active form in vivo is a heterodimer of G9a and GLP. How dimerization influences the central H3K9 methyl binding ("reading") and deposition ("writing") activity of G9a and GLP and why heterodimerization is essential in vivo remains opaque.

View Article and Find Full Text PDF

Protection of euchromatin from invasion by gene-repressive heterochromatin is critical for cellular health and viability. In addition to constitutive loci such as pericentromeres and subtelomeres, heterochromatin can be found interspersed in gene-rich euchromatin, where it regulates gene expression pertinent to cell fate. While heterochromatin and euchromatin are globally poised for mutual antagonism, the mechanisms underlying precise spatial encoding of heterochromatin containment within euchromatic sites remain opaque.

View Article and Find Full Text PDF

Heterochromatin spreading, the propagation of repressive chromatin along the chromosome, is a reaction critical to genome stability and defense, as well as maintenance of unique cell fates. Here, we discuss the intrinsic properties of the spreading reaction and circumstances under which its products, formed distal to DNA-encoded nucleation sites, can be epigenetically maintained. Finally, we speculate that the epigenetic properties of heterochromatin evolved together with the need to stabilize cellular identity.

View Article and Find Full Text PDF

The heterochromatin spreading reaction is a central contributor to the formation of gene-repressive structures, which are re-established with high positional precision, or fidelity, following replication. How the spreading reaction contributes to this fidelity is not clear. To resolve the origins of stable inheritance of repression, we probed the intrinsic character of spreading events in fission yeast using a system that quantitatively describes the spreading reaction in live single cells.

View Article and Find Full Text PDF

Schizosaccharomyces pombe is an outstanding model organism for cell biological investigations, yet the range of useful and well-characterized fluorescent proteins (XFPs) is limited. We generated and characterized three recoded fluorescent proteins for 3-color analysis in S.pombe, Super-folder GFP, monomeric Kusabira Orange 2 and E2Crimson.

View Article and Find Full Text PDF

A mechanism for integrating light perception and the endogenous circadian clock is central to a plant's capacity to coordinate its growth and development with the prevailing daily light/dark cycles. Under short-day (SD) photocycles, hypocotyl elongation is maximal at dawn, being promoted by the collective activity of a quartet of transcription factors, called PIF1, PIF3, PIF4, and PIF5 (phytochrome-interacting factors). PIF protein abundance in SDs oscillates as a balance between synthesis and photoactivated-phytochrome-imposed degradation, with maximum levels accumulating at the end of the long night.

View Article and Find Full Text PDF

Effective boundary mechanisms halt the spread of repressive histone methylation. In the fission yeast Schizosacchromyces pombe, two factors/elements required for boundary function have been described, the jmjC protein Epe1 and binding sites for the RNA polymerase III transcription factor TFIIIC. Perplexingly, individual mutation of Epe1 or TFIIIC sites produces only mild boundary defects, and no other boundary factors have been identified.

View Article and Find Full Text PDF

In Schizosaccharomyces pombe, heterochromatin spread, which is marked by histone 3 lysine 9 methylation (H3K9me), requires the chromodomains (CDs) of the H3K9 methylase Suv39/Clr4 and the HP1/Swi6 protein. It is unclear how the actions of these two H3K9me-recognizing CDs are coordinated. We find that the intrinsic preference of Suv39/Clr4 is to generate dimethylated H3K9 product.

View Article and Find Full Text PDF

Jumonji histone demethylases catalyze removal of methyl marks from lysine residues in histone proteins within nucleosomes. Here, we show that the catalytic domain of demethylase JMJD2A (cJMJD2A) utilizes a distributive mechanism to remove the histone H3 lysine 9 trimethyl mark. By developing a method to assess demethylation of homogeneous, site-specifically methylated nucleosomes, we determined that the kinetic parameters for demethylation of nucleosomes by cJMJD2A are comparable to those of peptide substrates.

View Article and Find Full Text PDF

Plants respond to shade-modulated light signals via phytochrome (phy)-induced adaptive changes, termed shade avoidance. To examine the roles of Phytochrome-Interacting basic helix-loop-helix Factors, PIF1, 3, 4, and 5, in relaying such signals to the transcriptional network, we compared the shade-responsive transcriptome profiles of wild-type and quadruple pif (pifq) mutants. We identify a subset of genes, enriched in transcription factor-encoding loci, that respond rapidly to shade, in a PIF-dependent manner, and contain promoter G-box motifs, known to bind PIFs.

View Article and Find Full Text PDF

HP1 proteins are central to the assembly and spread of heterochromatin containing histone H3K9 methylation. The chromodomain (CD) of HP1 proteins specifically recognizes the methyl mark on H3 peptides, but the same extent of specificity is not observed within chromatin. The chromoshadow domain of HP1 proteins promotes homodimerization, but this alone cannot explain heterochromatin spread.

View Article and Find Full Text PDF

We show that a previously uncharacterized Arabidopsis thaliana basic helix-loop-helix (bHLH) phytochrome interacting factor (PIF), designated PIF7, interacts specifically with the far-red light-absorbing Pfr form of phyB through a conserved domain called the active phyB binding motif. Similar to PIF3, upon light exposure, PIF7 rapidly migrates to intranuclear speckles, where it colocalizes with phyB. However, in striking contrast to PIF3, this process is not accompanied by detectable light-induced phosphorylation or degradation of PIF7, suggesting that the consequences of interaction with photoactivated phyB may differ among PIFs.

View Article and Find Full Text PDF

The phytochrome (phy) family of sensory photoreceptors (phyA-E in Arabidopsis) elicit changes in gene expression after light-induced migration to the nucleus, where they interact with basic helix-loop-helix transcription factors, such as phytochrome-interacting factor 3 (PIF3). The mechanism by which PIF3 relays phy signals, both early after initial light exposure and later during long-term irradiation, is not understood. Using transgenically expressed PIF3 variants, carrying site-specific amino acid substitutions that block the protein from binding either to DNA, phyA, and/or phyB, we examined the involvement of PIF3 in early, phy-induced marker gene expression and in modulating long-term, phy-imposed inhibition of hypocotyl cell elongation under prolonged, continuous irradiation.

View Article and Find Full Text PDF

Following light-induced nuclear translocation, the phytochromes induce changes in gene expression to regulate plant development. PIF3 and other PIFs (phytochrome-interacting factors), members of the bHLH (basic helix-loop-helix) family of transcriptional regulators, interact specifically with the active Pfr conformer of the phytochrome molecule, suggesting that the PIFs are key components of phytochrome signal transduction. The mechanism by which the PIFs transduce phytochrome signals is not understood.

View Article and Find Full Text PDF

Following light-induced nuclear translocation, specific members of the phytochrome (phy) photoreceptor family (phyA to phyE) interact with bHLH transcription factors, such as PIF3, and induce changes in target-gene expression. The biochemical mechanism comprising signal transfer from phy to PIF3 has remained undefined but results in rapid degradation of PIF3. We provide evidence that photoactivation of phy induces rapid in vivo phosphorylation of PIF3 preceding degradation.

View Article and Find Full Text PDF