Publications by authors named "Basova T"

This paper presents the results of quantum-chemical modeling performed by the Density Functional-Based Tight Binding (DFTB) method to investigate the change in the band structure of hybrid materials based on carbon nanotubes and unsubstituted, tetra-, or octa-halogen-substituted zinc phthalocyanines upon the adsorption of ammonia molecules. The study showed that the electrical conductivity of these materials and its changes in the case of interaction with ammonia molecules depend on the position of the impurity band formed by the orbitals of macrocycle atoms relative to the forbidden energy gap of the hybrids. The sensor response of the hybrids containing halogenated phthalocyanines was lower by one or two orders of magnitude, depending on the number of substituents, compared to the hybrid with unsubstituted zinc phthalocyanine.

View Article and Find Full Text PDF

This review summarized the developments in the field of volatile silver complexes, which can serve as precursors in gas-transport reactions for the production of thin films and metal nanoparticles via chemical vapor deposition (CVD) and atomic layer deposition (ALD). Silver-based films and nanoparticles are widely used in various high-tech fields, including medicine. For effective use in CVD and ALD processes, the properties of silver precursors must be balanced in terms of volatility, thermal stability, and reactivity.

View Article and Find Full Text PDF

Using gas-phase deposition (Physical Vapor Deposition (PVD) and Metal Organic Chemical Vapor Deposition (MOCVD)) methods, modern implant samples (Ti alloy and CFR-PEEK polymer, 30% carbon fiber) were functionalized with film heterostructures consisting of an iridium or gold sublayer, on the surface of which an antibacterial component (silver) was deposited: Ag/Ir(Au)/Ti(CFR-PEEK). The biocidal effect of the heterostructures was investigated, the effect of the surface relief of the carrier and the metal sublayer on antibacterial activity was established, and the dynamics of silver dissolution was evaluated. It has been shown that the activity of Ag/Ir heterostructures was due to high Ag release rates, which led to rapid (2-4 h) inhibition of growth.

View Article and Find Full Text PDF

Halogenated metal phthalocyanines are promising materials for the manufacture of active layers of chemiresistive sensors for the detection of various gases. Despite the high interest in such sensors, there are few systematic studies of the position of halogen substituents in phthalocyanine macroring on the chemiresistive response of their films to gases. In this work, we prepared and studied films of novel tetrachlorosubstituted vanadyl phthalocyanine derivatives with Cl substituents in the peripheral (VOPcCl-p) and nonperipheral (VOPcCl-np) positions of the phthalocyanine ring as active layers of chemiresistive sensors to reveal the effect of the position of substituents on their structure and sensor response to low concentrations of NH.

View Article and Find Full Text PDF

In this work, we study the effect of substituents in cobalt(II) and iron(II) phthalocyanines (CoPcR and FePcR with R = H, F, Cl, tBu) on the structural features of their films, and their chemi-resistive sensor response to a low concentration of nitric oxide. For the correct interpretation of diffractograms of phthalocyanine films, structures of CoPcCl and FePcCl single crystals were determined for the first time. Films were tested as active layers for the determination of low concentrations of NO (10-1000 ppb).

View Article and Find Full Text PDF

Nanoarchitectures with promising properties have now been formed from many important biomolecules. However, the preparation of nanoparticles of vitamin B and its derivatives remains an ongoing research challenge. This paper describes the formation of supermolecular nanoentities (SMEs) of vitamin B derivatives, unique nanoparticles with strong noncovalent intermolecular interactions, emerging properties, and activity.

View Article and Find Full Text PDF

In this work, octafluoro-substituted phthalocyanines of zinc, vanadyl, and cobalt (MPcF, M = Zn(II), Co(II), VO) were synthesized and studied. The structures of single crystals of the obtained phthalocyanines were determined. To visualize and compare intermolecular contacts in MPcF, an analysis of Hirshfeld surfaces (HS) was performed.

View Article and Find Full Text PDF

This paper presents pioneering results on the evaluation of noble metal film hetero-structures to improve some functional characteristics of carbon-based implant materials: carbon-composite material (CCM) and carbon-fiber-reinforced polyetheretherketone (CFR-PEEK). Metal-organic chemical vapor deposition (MOCVD) was successfully applied to the deposition of Ir, Pt, and PtIr films on these carriers. A noble metal layer as thin as 1 µm provided clear X-ray imaging of 1−2.

View Article and Find Full Text PDF

Nitrites are widely used in the food industry, particularly for the preservation of meat products. Controlling the nitrate content in food is an important task to ensure people's health is not at risk; therefore, the search for, and research of, new materials that will modify the electrodes in the electrochemical sensors that detect and control the nitrate content in food products is an urgent task. In this paper, we describe the electrochemical behavior of a glass carbon electrode (GCE), modified with a Fe(II) tetra-tert-butyl phthalocyanine film (FePc(tBu)/GCE), and decorated with gold nanoparticles (Au/FePc(tBu)/GCE); this electrode was deposited using gas-phase methods.

View Article and Find Full Text PDF

This work is aimed at the development of new heterostructures based on cobalt phthalocyanines (CoPc) and gold nanoparticles (AuNPs), and the evaluation of the prospects of their use to determine low concentrations of ammonia and nitric oxide. For this purpose, CoPc films were decorated with AuNPs by gas-phase methods (MOCVD and PVD) and drop-casting (DC), and their chemiresistive sensor response to low concentrations of NO (10-50 ppb) and NH (1-10 ppm) was investigated. A comparative analysis of the characteristics of heterostructures depending on the preparation methods was carried out.

View Article and Find Full Text PDF

To search for new suitable Pd precursors for MOCVD/ALD processes, the extended series of fluorinated palladium complexes [Pd(CHCXCHCO(R))] with β-diketone [tfa-1,1,1-trifluoro-2,4-pentanedionato (); pfpa-5,5,6,6,6-pentafluoro-2,4-hexanedionato (); hfba-5,5,6,6,7,7,7-heptafluoro-2,4-heptanedionato ()] and β-iminoketone [i-tfa-1,1,1-trifluoro-2-imino-4-pentanonato (); i-pfpa-5,5,6,6,6-pentafluoro-2-imino-4-hexanonato (); i-hfba-5,5,6,6,7,7,7-heptafluoro-2-imino-4-heptanonato ()] ligands were synthesized with 70-80% yields and characterized by a set of experimental (SXRD, XRD, IR, NMR spectroscopy, TG) and theoretical (DFT, Hirshfeld surface analysis) methods. Solutions of Pd β-diketonates contained both and isomers, while only isomers were detected in the solutions of Pd β-iminoketonates. The molecules - and new polymorphs of complexes and were arranged preferentially in stacks, and the distance between molecules in the stack generally increased with elongation of the fluorine chain in ligands.

View Article and Find Full Text PDF

Nitric oxide (NO) is a highly reactive toxic gas that forms as an intermediate compound during the oxidation of ammonia and is used for the manufacture of hydroxylamine in the chemical industry. Moreover, NO is a signaling molecule in many physiological and pathological processes in mammals, as well as a biomarker indicating the course of inflammatory processes in the respiratory tract. For this reason, the detection of NO both in the gas phase and in the aqueous media is an important task.

View Article and Find Full Text PDF

This work is aimed at developing the modification of the surface of medical implants with film materials based on noble metals in order to improve their biological characteristics. Gas-phase transportation methods were proposed to obtain such materials. To determine the effect of the material of the bottom layer of heterometallic structures, Ir, Pt, and PtIr coatings with a thickness of 1.

View Article and Find Full Text PDF

Interface properties of chloroaluminum(iii) phthalocyanine (AlClPc) on two different rutile titanium dioxide (TiO2) single crystal surfaces ((100) and (001)) have been studied using X-ray and ultraviolet photoemission spectroscopy (XPS and UPS). It is shown that the strength of the interaction clearly depends on the substrate termination and preparation. Generally, the (001) surface is more reactive compared to the (100) surface.

View Article and Find Full Text PDF

In this work, the novel hybrid nanomaterial SWCNT/SiPc made of single walled carbon nanotubes (SWCNT) cross-linked via axially substituted silicon (IV) phthalocyanine (SiPc) was studied as the active layer of chemiresistive layers for the detection of ammonia and hydrogen. SWCNT/SiPc is the first example of a carbon-based nanomaterial in which an axially substituted phthalocyanine derivative is used as a linker. The prepared hybrid material was characterized by spectroscopic methods, thermogravimetry, scanning and transmission electron microscopies.

View Article and Find Full Text PDF

In this work, the tetra-, octa- and hexadecachloro-substituted copper phthalocyanines CuPcCl (where x can equal 4, 8 or 16) were investigated by the methods of vibrational (IR and Raman) spectroscopy and X-ray diffraction. The assignment of the most intense bands, both in IR and Raman spectra, was carried out on the basis of DFT calculations. The structure of a CuPcCl single crystal grown by sublimation in vacuum was refined for the first time.

View Article and Find Full Text PDF

In this work, thin films of vanadyl phthalocyanines (VOPc and VOPcF) are studied as active layers for the detection of gaseous ammonia and hydrogen. The effect of F-substituents on the structural features of vanadyl phthalocyanine films and their sensor response toward ammonia (10-50 ppm) and hydrogen (100-500 ppm) is investigated by X-ray diffraction (XRD) and chemiresistive methods, respectively. It is shown that the sensor response of VOPcF films to ammonia is 2-3 times higher than that of VOPc films.

View Article and Find Full Text PDF

Biocompatible PtIr layers combining high mechanical strength of the iridium component and outstanding corrosion resistance of the platinum component providing reversible charge transfer reactions in the living tissue are one of the important materials required for implantable medical electrodes. The modern trend to complicate the shape and reduce the electrode dimensions includes the challenge to develop precise methods to obtain such bimetallic coatings with enhanced surface area and advanced electrochemical characteristics. Herein, PtIr coatings were firstly obtained on cathode and anode pole tips of endocardial electrodes for pacemakers using chemical vapor deposition technique.

View Article and Find Full Text PDF

Herein, a novel one step synthesis of multicomponent three dimensional polyacrylic acid (PAA) based conducting hydrogel (CH) incorporated with iron phthalocyanine functionalised graphene nanoplatelets (GPL-FePc) is reported. An amperometric glucose biosensor was fabricated by the immobilization of glucose oxidase (GOx) onto the synthesised PAA-VS-PANI/GPL-FePc-CH (where VS-PANI is vinyl substituted polyaniline). Scanning electron microscopy reveals the presence of three dimensional microporous structure with estimated pore size of 19 μm.

View Article and Find Full Text PDF

In this work, 4,4-difluoro-8-(4-hydroxyphenyl)- 2,6-diethynly-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene (BODIPY) having double terminal ethynyl groups was synthesized. Three dimensional single walled carbon nanotube (SWCNT)-BODIPY hybrid material (3D SWCNT-BODIPY) was synthesized by the reaction of BODIPY bearing double terminal ethynyl groups with azido containing SWCNTs via "Click" reaction. The structural properties and electrochemical detection of eserine (a pesticide) on BODIPY functionalized SWCNTs as a three dimensional (3D) material were investigated.

View Article and Find Full Text PDF

In this work, the sensor response of MPcF (M = Cu, Co, Zn; = 0, 4, 16) films toward gaseous NH₃ (10⁻50 ppm) was studied by a chemiresistive method and compared to that of unsubstituted MPc films to reveal the effects of central metals and F-substituents on the sensing properties. A combination of atomic force microscopy and X-ray diffraction techniques have been used to elucidate the structural features of thin MPcF films deposited by organic molecular beam deposition. It has been shown that the sensor response of MPcF₄ films to ammonia is noticeably higher than that of MPc films, which is in good correlation with the values of binding energy between the metal phthalocyanine and NH₃ molecules, as calculated by the density functional theory (DFT) method.

View Article and Find Full Text PDF

The synthesis and characterization of new hybrid materials based on reduced graphene oxide (rGO) or single walled carbon nanotubes (SWCNTs) covalently functionalized by 4,4'-difluoro-8-(4-propynyloxy)-phenyl-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene (BODIPY) (2) or 7-(prop-2-yn-1-yloxy)-3-(3',4',5'-trimethoxyphenyl)-coumarin (4) as light harvesting groups have been described. The organic solar cell performances of these novel nanomaterials in P3HT:PCBM blends were investigated. These covalently bonded hybrid materials (reduced graphene oxide:BODIPY (GB), reduced graphene oxide:Coumarin (GC), SWCNTs:BODIPY (CB) and SWCNTs:Coumarin (CC)) were prepared by an azide-alkyne Huisgen cycloaddition (click) reaction between the azide bearing SWCNTs or rGO and terminal ethynyl functionalized BODIPY (2) or coumarin (4) derivatives.

View Article and Find Full Text PDF

The facile preparation of highly sensitive electrochemical bioprobe based on lutetium phthalocyanine incorporated silica nanoparticles (SiO(LuPc)) grafted with Poly(vinyl alcohol-vinyl acetate) itaconic acid (PANI(PVIA)) doped polyaniline conducting nanobeads (SiO(LuPc)PANI(PVIA)-CNB) is reported. The preparation of CNB involves two stages (i) pristine synthesis of LuPc incorporated SiO and PANI(PVIA); (ii) covalent grafting of PANI(PVIA) onto the surface of SiO(LuPc). The morphology and other physico-chemical characteristics of CNB were investigated.

View Article and Find Full Text PDF

Thin films of non-covalently hybridized single-walled carbon nanotubes (SWCNT) and tetra-substituted copper phthalocyanine (CuPcR4) molecules have been produced from their solutions in dimethylformamide (DMF). FTIR spectra revealed the 7π-7π interaction between SWCNTs and CuPcR4 molecules. DC conductivity of films of acid-treated SWCNT/CuPcR4 hybrid has increased by more than three orders of.

View Article and Find Full Text PDF

We describe a fast, simple method for the fabrication of reusable, robust gold nanostructures over macroscopic (cm(2)) areas. A wide range of nanostructure morphologies is accessible in a combinatorial fashion. Self-assembled monolayers of alkylthiolates on chromium-primed polycrystalline gold films are patterned using a Lloyd's mirror interferometer and etched using mercaptoethylamine in ethanol in a rapid process that does not require access to clean-room facilities.

View Article and Find Full Text PDF