Primary cilia are sensory antennae located at the cell surface which mediate a variety of extracellular signals involved in development, tissue homeostasis, stem cells and cancer. Primary cilia are found in an extensive array of vertebrae cells but can only be generated when cells become quiescent. The small intestinal epithelium is a rapidly self-renewing tissue organized into a functional unit called the crypt-villus axis, containing progenitor and differentiated cells, respectively.
View Article and Find Full Text PDFThe small intestine consists of two histological compartments composed of the crypts and the villi. The function of the adult small intestinal epithelium is mediated by four different types of mature cells: enterocytes, goblet, enteroendocrine and Paneth. Undifferentiated cells reside in the crypts and produce these four types of mature cells.
View Article and Find Full Text PDFThe integrin α6 subunit pre-messenger RNA undergoes alternative splicing to generate two different splice variants, named α6A and α6B, having distinct cytoplasmic domains. In the human colonic gland, these splice variants display different patterns of expression suggesting specific functions for each variant. We have previously found an up-regulation of the α6β4 integrin in colon adenocarcinomas as well as an increase in the α6A/α6B ratio, but little is known about the involvement of α6Aβ4 versus α6Bβ4 in this context.
View Article and Find Full Text PDFInteractions between the cell basal membrane domain and the basement membrane are involved in several cell functions including proliferation, migration and differentiation. Intestinal epithelial cells can interact with laminin, a major intestinal basement membrane glycoprotein, via several cell-surface laminin-binding proteins including integrin and non-integrin receptors. The 37/67kDa laminin receptor (37/67LR) is one of these but its role in normal epithelial cells is still unknown.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2013
The proto-oncogene Src is an important protein tyrosine kinase involved in signaling pathways that control cell adhesion, growth, migration and survival. Here, we investigated the involvement of Src family kinases (SFKs) in human intestinal cell differentiation. We first observed that Src activity peaked in early stages of Caco-2/15 cell differentiation.
View Article and Find Full Text PDFRecently, autophagy has been found to be strongly activated in colon cancer cells, but few studies have addressed the normal colon mucosa. The aim of this study was to characterize autophagy in normal human intestinal cells. We used the expression of LC3-II and BECN1 as well as SQSTM1 as markers of autophagy activity.
View Article and Find Full Text PDFThe crypt-villus axis constitutes the functional unit of the small intestine, where mature absorptive cells are confined to the villi, and stem cells and transit amplifying and differentiating cells are restricted to the crypts. The polycomb group (PcG) proteins repress differentiation and promote self-renewal in embryonic stem cells. PcGs prevent transcriptional activity by catalysing epigenetic modifications, such as the covalent addition of methyl groups on histone tails, through the action of the polycomb repressive complex 2 (PRC2).
View Article and Find Full Text PDFCollagen VI is a heterotrimer composed of three α chains (α1, α2, α3) widely expressed throughout various interstitial matrices. Collagen VI is also found near the basement membranes of many tissues where it serves as an anchoring meshwork. The aim of this study was to investigate the distribution and role of collagen VI at the epithelial-stromal interface in the intestine.
View Article and Find Full Text PDFThe expression of apoptotic factors Bcl-2 and Bax were studied in the conjunctiva of diabetic patients with and without retinopathy. All patients underwent a complete ophthalmic examination including ocular fundus and retinal fluorescein angiography. The indirect immunoperoxidase method was performed on 15 normal conjunctiva taken during cataract surgery (group 1), on 40 eyes of 40 patients with type 2 diabetes without diabetic retinopathy (group 2) and 13 eyes of 13 patients with diabetic retinopathy (group 3).
View Article and Find Full Text PDFIn this study, we have analyzed the expression and localization of polycystin-1 in intestinal epithelial cells, a system lacking primary cilia. Polycystin-1 was found to be expressed in the epithelium of the small intestine during development and levels remained elevated in the adult. Dual-labelling indirect immunofluorescence revealed polycystin-1 at sites of cell-cell contact co-localizing with the desmosomes both in situ as well as in polarized Caco-2/15 cells.
View Article and Find Full Text PDFRapid and efficient healing of epithelial damage is critical to the functional integrity of the small intestine. Epithelial repair is a complex process that has largely been studied in cultured epithelium but to a much lesser extent in mucosa. We describe a novel method for the study of wound healing using a co-culture system that combined an intestinal epithelial Caco-2/15 cell monolayer cultured on top of human intestinal myofibroblasts, which together formed a basement membrane-like structure that contained many of the major components found at the epithelial-mesenchymal interface in the human intestine.
View Article and Find Full Text PDFIntegrin-linked kinase (ILK) plays a role in integrin signaling-mediated extracellular matrix (ECM)-cell interactions and also acts as a scaffold protein in functional focal adhesion points. In the present study, we investigated the expression and roles of ILK in human intestinal epithelial cells (IECs) in vivo and in vitro. Herein, we report that ILK and its scaffold-function interacting partners, PINCH-1, alpha-parvin, and beta-parvin, are expressed according to a decreasing gradient from the bottom of the crypt (proliferative/undifferentiated) compartment to the tip of the villus (non-proliferative/differentiated) compartment, closely following the expression pattern of the ECM/basement membrane component fibronectin.
View Article and Find Full Text PDFBackground: Integrins are known to be important contributors to cancer progression. We have previously shown that the integrin beta4 subunit is up-regulated in primary colon cancer. Its partner, the integrin alpha6 subunit, exists as two different mRNA splice variants, alpha6A and alpha6B, that differ in their cytoplasmic domains but evidence for distinct biological functions of these alpha6 splice variants is still lacking.
View Article and Find Full Text PDFBackground: Integrins are transmembrane alphabeta heterodimer receptors that function as structural and functional bridges between the cytoskeleton and ECM (extracellular matrix) molecules. The RGD (arginine-glycine-aspartate tripeptide motif)-dependent integrin alpha8beta1 has been shown to be involved in various cell functions in neuronal and mesenchymal-derived cell types. Its role in epithelial cells remains unknown.
View Article and Find Full Text PDFThe integrin alpha6 subunit exists as two different variants, termed alpha6A and alpha6B. These two variants have been shown to harbor potentially distinct biochemical properties but little is known about their cellular function. The aim of this work was to characterize the expression of the integrin alpha6A and B variants in relation to cell proliferation and differentiation in the human small intestinal epithelium.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
August 2006
Polycystin-1 and polycystin-2 are involved in autosomal dominant polycystic kidney disease by unknown mechanisms. These two proteins are located in primary cilia where they mediate mechanosensation, suggesting a link between cilia function and renal disease. In this study, we sought to characterize the subcellular localization of polycystin-L, a closely related member of polycystin-2, in epithelial renal cell lines.
View Article and Find Full Text PDFThe aim of this study was to investigate the short-term regulation of the ACTH receptor human (h) melanocortin receptor 2 (MC2R) by transfection of a c-Myc-tagged hMC2R in the M3 cell line and assess its membrane expression by indirect immunofluorescence. Stimulation with ACTH induced production of cAMP with EC(50) values ranging from 7.6-11.
View Article and Find Full Text PDFThe integrin beta4 subunit has been shown to be involved in various aspects of cancer progression. The aim of the present work was to evaluate the expression of beta4 in primary colon cancers and to investigate the occurrence of a previously identified intestinal nonfunctional variant of beta4 (beta4ctd-) for adhesion to laminin. Immunodetection of beta4 using a panel of antibodies and RT-PCR analyses were performed on series of paired primary colon tumors and corresponding resection margins.
View Article and Find Full Text PDFIn the present study, we show that the eicosanoid compound, 20-hydroxyeicosatetraenoic acid (20-HETE), an important arachidonic acid metabolite, activates mouse TRPC6 in a stable, overexpressing HEK293 cell line, Hek-t6.11. Application of 20-HETE rapidly induced an inward, non-selective current in whole-cell recordings, which was inhibited by N-methyl-d-glucamine, 1.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
September 2003
20-Hydroxyeicosatetraenoic acid (20-HETE) controls several mechanisms such as vasoactivity, mitogenicity, and ion transport in various tissues. Our goal was to quantify the effects of 20-HETE on the electrophysiological properties of airway smooth muscle (ASM). Isometric tension measurements, performed on guinea pig ASM, showed that 20-HETE induced a dose-dependent inotropic effect with an EC50 value of 1.
View Article and Find Full Text PDFPolycystin-2 (PC2) is the product of the second cloned gene (PKD2) responsible for autosomal dominant polycystic kidney disease and has recently been shown to be a calcium-permeable cation channel. PC2 has been shown to connect indirectly with the actin microfilament. Here, we report a direct association between PC2 and the actin microfilament.
View Article and Find Full Text PDFPolycystin-L (PCL), the third member of the polycystin family of proteins, functions as a Ca2+-modulated nonselective cation channel when expressed in Xenopus oocytes. Polycystin-1 and -2 are mutated in autosomal-dominant polycystic kidney disease (ADPKD), but the role of PCL in disease has not been determined. In this study, an anti-peptide polyclonal antiserum was generated against the carboxyl terminal domain of human PCL and used to determine the patterns of expression and distribution of PCL by indirect immunofluorescence in both developing and adult mice.
View Article and Find Full Text PDFMost patients with autosomal dominant polycystic kidney disease (ADPKD) harbor mutations truncating polycystin-1 (PC1) or polycystin-2 (PC2), products of the PKD1 and PKD2 genes, respectively. A third member of the polycystin family, polycystin-L (PCL), was recently shown to function as a Ca(2+)-modulated nonselective cation channel. More recently, PC2 was also shown to be a nonselective cation channel with comparable properties to PCL, though the membrane targeting of PC2 likely varies with cell types.
View Article and Find Full Text PDFBiochem Biophys Res Commun
March 2001
Mutations in polycystins-1 and -2 (PC1 and PC2) cause autosomal dominant polycystic kidney disease (ADPKD), which is characterized by progressive development of epithelial renal cysts, ultimately leading to renal failure. The functions of these polycystins remain elusive. Here we show that PC2 is a Ca(2+)-permeable cation channel with properties distinct from any known intracellular channels.
View Article and Find Full Text PDF