The present study aims to characterize three industrial wastewater samples collected from petrochemical, food and beet sugar industries to determine the pollution potential and select the appropriate pre-treatment approach. According to the biodegradability profile of the multi-sourced mixed (composite) sample, the advanced oxidation process (AOPs) namely, Fenton (F) and Electro-Fenton (EF) were adopted as pre-treatment techniques and the operating parameters such as time, type of electrodes, pH, voltage, iron and HO concentrations were critically examined. Analysis of Variance (ANOVA) was conducted to compare the performance efficiency of F& EF AOPs for treating the composite samples and the total operating costs for both approaches were assessed.
View Article and Find Full Text PDFRecently, biometrics has become widely used in applications to verify an individual's identity. To address security issues, biometrics presents an intriguing window of opportunity to enhance the usability and security of the Internet of Things (IoT) and other systems. It can be used to secure a variety of newly emerging IoT devices.
View Article and Find Full Text PDFOil spills are a significant threat to the marine ecosystem that requires immediate removal from the oceanic environment. Many technologies have been employed to clean up oil spills. Of these, adsorption has scored a prominent success due to the high efficiency, economic viability, environmental friendship, and ease of application.
View Article and Find Full Text PDFThe security issue is essential in the Internet-of-Things (IoT) environment. Biometrics play an important role in securing the emerging IoT devices, especially IoT robots. Biometric identification is an interesting candidate to improve IoT usability and security.
View Article and Find Full Text PDFThe present study proposes a novel alternative method of the current biogas upgrading techniques by converting CO (in the biogas) into valuable chemicals (e.g., volatile fatty acids) using H as energy source and acetogenic mixed culture as biocatalyst.
View Article and Find Full Text PDFA novel biological process to upgrade biogas was developed and optimised during the current study. In this process, CO in the biogas and externally provided H were fermented under mesophilic conditions to volatile fatty acids (VFAs), which are building blocks of higher-value biofuels. Meanwhile, the biogas was upgraded to biomethane (CH >95%), which can be used as a vehicle fuel or injected into the natural gas grid.
View Article and Find Full Text PDF