Publications by authors named "Basma M Eid"

Marine endophytic fungi from under-explored locations are a promising source for the discovery of new bioactivities. Different endophytic fungi were isolated from plants and marine organisms collected from Wadi El-Natrun saline lakes and the Red Sea near Hurghada, Egypt. The isolated strains were grown on three different media, and their ethyl acetate crude extracts were evaluated for their antimicrobial activity against a panel of pathogenic bacteria and fungi as well as their antioxidant properties.

View Article and Find Full Text PDF

In this work, multifunctional linen cellulose fabrics were facilely developed by using an eco-friendly finishing formulations and the pad-dry/microwave fixation technique. Both reactant resin and citric acid have been employed as low- and zero-formaldehyde crosslinkers along with their proper catalyzing agents. Individual incorporation of ascorbic acid and selected phenolic compounds namely salicylic acid, resorcinol, and gallic acid, as natural active ingredient (AI-OH) along with PEG-400 or modified nonionic silicone-softener in ether- or ester-crosslinking formulation and their impacts on the performance, functional properties and degree of coloration of the finished fabrics were investigated.

View Article and Find Full Text PDF

This study demonstrated that antibacterial cellulosic textiles can be fabricated in eco-friendly manner by grafting of monochlorotriazinyl β-cyclodextin (MCT-βCD) onto knitted and woven cotton fabrics followed by post-loading of any of the green active ingredients namely Rosemary oil, Lavender oil, Clove oil, Cinnamon oil, Aloe vera gel, Vanillin, Ag-ions, Natural Yellow 7 and Natural Red 25 dyes into the hydrophobic cavities of grafted β-CD moieties. Some of the grafted, post-loaded fabric samples were characterized by FTIR, SEM, and EDS analysis. The enhancement in the imparted antibacterial functionality as well as durability to wash are governed by type of cellulosic substrate, kind, chemistry, antibacterial activity as well as extent of inclusion and subsequent release of the hosted bioactive agent.

View Article and Find Full Text PDF

New and durable multifunctional properties of cotton/polyester blended fabrics were developed through loading of chitosan (Cs) and various metal oxide nanoparticles (MONPs) namely ZnO, TiO, and SiO onto fabric surface using citric acid/Sodium hypophosphite for ester-crosslinking and creating new anchoring and binding sites, COOH groups, onto the ester-crosslinked fabrics surface. The surface morphology and the presence of active ingredients (Cs & MONPs) onto selected - coated fabric samples were analyzed by SEM images and confirmed by EDS spectrums. The influence of various finishing formulations on some performance and functional properties such as wettability, antibacterial activity, UV-protection, self-cleaning, resiliency and durability to wash were studied.

View Article and Find Full Text PDF