This project aims to create a 316L stainless steel coated with a biocomposite based on chitosan for use in the biomedical industry. To completely coat the material, the dip-coating technique was used to apply plain chitosan, chitosan nanosilver, chitosan biotin, and chitosan-nanosilver-biotin in that order. This coating's surface morphology was investigated with field emission scanning electron microscopy (FESEM).
View Article and Find Full Text PDFHerein, we describe the multi-step synthesis and characterization of monodisperse cubic-structured nanocrystalline diamond particles, showing that they can be easily prepared from graphite flakes under ambient conditions. The above synthesis features the conversion of graphite flakes into graphene oxide (via a modified Hummer's method) and its subsequent transformation into nanodiamond under the action of ultrasonication-induced cavitation, with the nucleation and growth of nanodiamond particles being strongly influenced by the incorporation of a specific metal oxide spacer material. Overall, the developed method is demonstrated to be superior to conventionally used ones, exhibiting the advantages of simplicity, high yield, and upscaling potential.
View Article and Find Full Text PDF