Zinc finger nucleases (ZFN) can facilitate targeted gene addition to the genome while minimizing the risks of insertional mutagenesis. Here, we used a previously characterized ZFN pair targeting the chemokine (C-C motif) receptor 5 (CCR5) locus to introduce, as a proof of concept, the enhanced green fluorescent protein (eGFP) or the microdystrophin genes into human myoblasts. Using integrase-defective lentiviral vectors (IDLVs) and chimeric adenoviral vectors to transiently deliver template DNA and ZFN respectively, we achieved up to 40% targeted gene addition in human myoblasts.
View Article and Find Full Text PDFBackground Aims: Gene-modified mesenchymal stromal cells (MSC) provide a promising tool for cell and gene therapy-based applications by potentially acting as a cellular vehicle for protein-replacement therapy. However, to avoid the risk of insertional mutagenesis, targeted integration of a transgene into a 'safe harbor' locus is of great interest.
Methods: We sought to determine whether zinc finger nuclease (ZFN)-mediated targeted addition of the erythropoietin (Epo) gene into the chemokine [C-C motif] receptor 5 (CCR5) gene locus, a putative safe harbor locus, in MSC would result in stable transgene expression in vivo.
Duchenne muscular dystrophy is a recessive disease due to a mutation in the dystrophin gene. Myoblast transplantation permits to introduce the dystrophin gene in dystrophic muscle fibers. However, the success of this approach is reduced by the short duration of the regeneration following the transplantation, which reduces the number of hybrid fibers.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is an inherited disease that leads to progressive muscle wasting. Myogenic precursor cell transplantation is an approach that can introduce the normal dystrophin gene in the muscle fibers of the patients. Unfortunately, these myogenic precursor cells do not migrate well in the muscle and thus many injections have to be done to enable a good graft success.
View Article and Find Full Text PDFTransplantation of normal muscle precursor cells is a potential approach to restore dystrophin expression within dystrophin [deficient] mdx mice, a model of Duchenne Muscular Dystrophy. This study aims to evaluate whether exercise could improve graft success and hybrid fiber distribution within mdx muscle. eGFP(+) Muscle precursor cells were transplanted into tibialis anterior muscles of mdx mice using a single injection trajectory.
View Article and Find Full Text PDFThe quantification of the graft success is a key element to evaluate the efficiency of cellular therapies for several pathologies such as Duchenne muscular dystrophy. This study describes an approach to evaluate the success of myoblast transplantation (i.e.
View Article and Find Full Text PDFBackground: : Duchenne muscular dystrophy (DMD) is caused by a dystrophin gene mutation. Transplantation of normal myoblasts results in long-term restoration of dystrophin. However, the success of this approach is compromised by the limited time of regeneration following muscle damage.
View Article and Find Full Text PDFBackground: Duchenne muscular dystrophy is a disease caused by the incapacity to synthesize dystrophin, which is implicated in the maintenance of the sarcolemma integrity. Myoblast transplantation is a potential treatment of this disease. However, most of the transplanted cells die very rapidly after their injection.
View Article and Find Full Text PDF