Internal state-dependent behavioral flexibility, such as the ability to switch between rejecting and accepting sexual advances based on a female's reproductive capacity, is crucial for maintaining meaningful social interactions. While the role of the ventrolateral ventromedial hypothalamus (VMHvl) in sexual acceptance is well established, the neural mechanisms underlying sexual rejection remain unexplored. In this study, we identify progesterone receptor-expressing neurons in the anterior VMHvl (aVMHvl) as key regulators of cyclical female sexual rejection behavior.
View Article and Find Full Text PDFInnate behaviors ensure animal survival and reproductive success. Defending their territory, escaping from predators or mating with a sexual partner, are fundamental behaviors determining the ecological fitness of individuals. Remarkably, all these behaviors share a common neural substrate, as they are under the control of the ventromedial hypothalamus (VMH).
View Article and Find Full Text PDFNorepinephrine (NE), and specific adrenoceptors, have been reported to influence distinct aspects of adult hippocampal neurogenesis, including latent stem cell activation, progenitor proliferation, and differentiation. These findings are predominantly based on the use of pharmacological approaches in both and systems. Here, we sought to assess the consequences of genetic ablation of NE on adult hippocampal neurogenesis, by examining dopamine β hydroxylase knockout () mice, which lack NE from birth.
View Article and Find Full Text PDFTrends Endocrinol Metab
November 2022
Sex is fundamental for the evolution and survival of most species. However, sex can also pose danger, because it increases the risk of predation and disease transmission, among others. Thus, in many species, cyclic fluctuations in the concentration of sex hormones coordinate sexual receptivity and attractiveness with female reproductive capacity, promoting copulation when fertilization is possible and preventing it otherwise.
View Article and Find Full Text PDFBackground: Electroconvulsive seizure treatment is a fast-acting antidepressant therapy that evokes rapid transcriptional, neurogenic, and behavioral changes. Epigenetic mechanisms contribute to altered gene regulation, which underlies the neurogenic and behavioral effects of electroconvulsive seizure. We hypothesized that electroconvulsive seizure may modulate the expression of epigenetic machinery, thus establishing potential alterations in the epigenetic landscape.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
August 2015
Adjunct α2-adrenoceptor antagonism is a potential strategy to accelerate the behavioral effects of antidepressants. Co-administration of the α2-adrenoceptor antagonist yohimbine hastens the behavioral and neurogenic effects of the antidepressant imipramine. We examined the transcriptional targets of short duration (7days), combination treatment of yohimbine and imipramine (Y+I) within the adult rat hippocampus.
View Article and Find Full Text PDFNorepinephrine regulates latent neural stem cell activity and adult hippocampal neurogenesis, and has an important role in modulating hippocampal functions such as learning, memory and mood. Adult hippocampal neurogenesis is a multi-stage process, spanning from the activation and proliferation of hippocampal stem cells, to their differentiation into neurons. However, the stage-specific effects of noradrenergic receptors in regulating adult hippocampal neurogenesis remain poorly understood.
View Article and Find Full Text PDF