One of the most fascinating aspects of condensed matter is its ability to conduct electricity, which is particularly pronounced in conventional metals such as copper or silver. Such behavior stems from a strong tendency of valence electrons to delocalize in a periodic potential created by ions in the crystal lattice of a given material. In many advanced materials, however, this basic delocalization process of the valence electrons competes with various processes that tend to localize these very same valence electrons, thus driving the insulating behavior.
View Article and Find Full Text PDFWe present a systematic study of electrical resistivity, superconductive transitions and the Hall effect for three systems of compositionally complex amorphous alloys of early (TE) and late (TL) transition metals: (TiZrNbNi)1-xCux and (TiZrNbCu)1-xCox in a broad composition range of 0
ACS Appl Mater Interfaces
October 2021
Growth of 2D materials under ultrahigh-vacuum (UHV) conditions allows for an in situ characterization of samples with direct spectroscopic insight. Heteroepitaxy of transition-metal dichalcogenides (TMDs) in UHV remains a challenge for integration of several different monolayers into new functional systems. In this work, we epitaxially grow lateral WS-MoS and vertical WS/MoS heterostructures on graphene.
View Article and Find Full Text PDFUsing a unique home-made cell for four-contact impedance spectroscopy of conductive liquid samples, we establish the existence of two low frequency conductivity relaxations in aqueous solutions of gelatin, in both liquid and gel states. A comparison with diffusion measurements using pulsed field gradient NMR, and circular dichroism spectroscopy, shows that the faster relaxation process is due to gelatin macromolecule self-diffusion. This single molecule diffusion is mostly insensitive to the macroscopic state of the sample, implying that we have a clear separation of gelatin molecules into a free and network-bound phase.
View Article and Find Full Text PDFWe have measured the Hall effect on recently synthesized single crystals of the quasi-one-dimensional organic conductor TTF-TCNQ (tetrathiafulvalene-tetracyanoquinodimethane), a well known charge transfer complex that has two kinds of conductive stacks: the donor (TTF) and the acceptor (TCNQ) chains. The measurements were performed in the temperature interval 30 K < T < 300 K and for several different magnetic field and current directions through the crystal. By applying the equivalent isotropic sample approach, we have demonstrated the importance of the choice of optimal geometry for accurate Hall effect measurements.
View Article and Find Full Text PDFWe present an improved approach to the impedance spectroscopy of conductive liquid samples using four-electrode measurements. Our method enables impedance measurements of conductive liquids down to the sub-Hertz frequencies, avoiding the electrode polarization effects that usually cripple standard impedance analysers. We have successfully tested our apparatus with aqueous solutions of potassium chloride and gelatin.
View Article and Find Full Text PDFWe study the extrinsic spin Hall effect induced by Ir impurities in Cu by injecting a pure spin current into a CuIr wire from a lateral spin valve structure. While no spin Hall effect is observed without Ir impurity, the spin Hall resistivity of CuIr increases linearly with the impurity concentration. The spin Hall angle of CuIr, (2.
View Article and Find Full Text PDFAt the interface between complex insulating oxides, novel phases with interesting properties may occur, such as the metallic state reported in the LaAlO(3)/SrTiO(3) system . Although this state has been predicted and reported to be confined at the interface, some studies indicate a much broader spatial extension, thereby questioning its origin. Here, we provide for the first time a direct determination of the carrier density profile of this system through resistance profile mappings collected in cross-section LaAlO(3)/SrTiO(3) samples with a conducting-tip atomic force microscope (CT-AFM).
View Article and Find Full Text PDFWe have investigated the dimensionality and origin of the magnetotransport properties of LaAlO3 films epitaxially grown on TiO2-terminated SrTiO3(001) substrates. High-mobility conduction is observed at low deposition oxygen pressures (P(O2)<10(-5) mbar) and has a three-dimensional character. However, at higher P(O2) the conduction is dramatically suppressed and nonmetallic behavior appears.
View Article and Find Full Text PDFWe report on tunneling magnetoresistance (TMR) experiments that demonstrate the existence of a significant spin polarization in Co-doped (La, Sr)TiO(3-delta) (Co-LSTO), a ferromagnetic diluted magnetic oxide system (DMOS) with high Curie temperature. These TMR experiments have been performed on magnetic tunnel junctions associating Co-LSTO and Co electrodes. Extensive structural analysis of Co-LSTO combining high-resolution transmission electron microscopy and Auger electron spectroscopy excluded the presence of Co clusters in the Co-LSTO layer and thus, the measured ferromagnetism and high spin polarization are intrinsic properties of this DMOS.
View Article and Find Full Text PDFThe low temperature phase (LTP) of alpha-(BEDT-TTF)2KHg(SCN)(4) salt is known for its surprising angular dependent magnetoresistance (ADMR), which has been studied intensively in the last decade. However, the nature of the LTP has not been understood until now. Here we analyze theoretically ADMR in unconventional (or nodal) charge-density wave (UCDW).
View Article and Find Full Text PDF