Unlabelled: Polyproline II (PPII) peptide sequences are recognized as promising biomaterials because of their attractive antifouling properties. However, the mechanisms behind their antifouling behavior have not been fully characterized. In this work we show that PPII peptide coverage, controlled by adsorption time, significantly reduces the fouling of bovine serum albumin (BSA, a model foulant).
View Article and Find Full Text PDFIntroduction Breast cancer is one of the most common causes of cancer among women. Since the administration of chemotherapy drugs can cause several adverse effects, thus it leads to research on effective treatment from natural sources. Leaves of L.
View Article and Find Full Text PDFA fungal isolate PDB-B (accession number: MT774567.1), which could tolerate up to 500 mg/L of cypermethrin, was isolated from the lake sediments of Kulamangalam tropical lake, Madurai, and identified by internal transcribed spacer (ITS) sequencing followed by phylogenetic analysis. The biotransformation potential of the strain was compared with five other strains (A, J, UN2, M1 and SM108) as a consortium, which were tentatively identified as , , , , and , respectively.
View Article and Find Full Text PDFA mino acids are the essential building blocks for collagen and proteoglycan, which are the main constituents for cartilage extracellular matrix (ECM). Synthesis of ECM proteins requires the uptake of various essential/nonessential amino acids. Analyzing amino acid metabolism during chondrogenesis can help to relate tissue quality to amino acid metabolism under different conditions.
View Article and Find Full Text PDFThe ability to maintain functional hepatocytes has important implications for bioartificial liver development, cell-based therapies, drug screening, and tissue engineering. Several approaches can be used to restore hepatocyte function in vitro, including coating a culture substrate with extracellular matrix (ECM), encapsulating cells within biomimetic gels (Collagen- or Matrigel-based), or co-cultivation with other cells. This paper describes the use of bioactive heparin-based core-shell microcapsules to form and cultivate hepatocyte spheroids.
View Article and Find Full Text PDFThe placental syncytiotrophoblast, a syncytium without cell-cell junctions, is the primary barrier between the mother and the fetus. Despite no apparent anatomical pathway for paracellular diffusion of solutes across the syncytiotrophoblast, size-dependent paracellular diffusion is observed. Here we report data demonstrating that the syncytiotrophoblast is punctuated by -syncytial nanopores (TSNs).
View Article and Find Full Text PDFNanodiamond (ND) with nitrogen vacancy (NV) color centers has emerged as an important material for quantum sensing and imaging. Fluorescent, carboxylated ND (140 nm) is investigated for the detection of dopamine (DA), caffeine (CA), and ascorbic acid (AA). Over a 200 nM range, DA and CA quenched the ND fluorescence by 7.
View Article and Find Full Text PDFHuman pluripotent stem cells (hPSC) hold considerable promise as a source of adult cells for treatment of diseases ranging from diabetes to liver failure. Some of the challenges that limit the clinical/translational impact of hPSCs are high cost and difficulty in scaling-up of existing differentiation protocols. In this paper, we sought to address these challenges through the development of bioactive microcapsules.
View Article and Find Full Text PDFA technique to fabricate hollow fibers with porous walls via templating from high internal phase emulsions (HIPEs) has been demonstrated. This technique provides an environmentally friendly process alternative to conventional methods for hollow-fiber productions that typically use organic solvents. HIPEs containing acrylate monomers were extruded into an aqueous curing bath.
View Article and Find Full Text PDFCellular therapies based on human pluripotent stem cells (hPSCs) offer considerable promise for treating numerous diseases including diabetes and end stage liver failure. Stem cell spheroids may be cultured in stirred bioreactors to scale up cell production to cell numbers relevant for use in humans. Despite significant progress in bioreactor culture of stem cells, areas for improvement remain.
View Article and Find Full Text PDFTissue Eng Part A
October 2021
Understanding chondrogenesis of human mesenchymal stem cells (hMSCs) is important as it holds great promise for cartilage tissue engineering and other applications. The current technology produces the end tissue quality that is highly variable and dependent on culture conditions. We investigated the effect of nutrient availability on hMSC chondrogenesis in a static aggregate culture system by varying the medium-change frequency together with starting glucose levels.
View Article and Find Full Text PDFLarge doses of chemical pesticides are required to achieve effective concentrations in the rhizosphere, which results in the accumulation of harmful residues. Precision farming is needed to improve the efficacy of pesticides, but also to avoid environmental pollution, and slow-release formulations based on nanoparticles offer one solution. Here, we tested the mobility of synthetic and virus-based model nanopesticides by combining soil column experiments with computational modelling.
View Article and Find Full Text PDFChondrogenesis of human mesenchymal stem cells (hMSCs) is an important biological process in many applications including cartilage tissue engineering. We investigated the glucose uptake characteristics of aggregates of hMSCs undergoing chondrogenesis over a 3-week period both experimentally and by using a mathematical model. Initial concentrations of glucose in the medium were varied from 1 to 4.
View Article and Find Full Text PDFHuman mesenchymal stem cell (hMSC)-based chondrogenesis is a key process used to develop tissue engineered cartilage constructs from stem cells, but the resulting constructs have inferior biochemical and biomechanical properties compared to native articular cartilage. Transforming growth factor β containing medium is commonly applied to cell layers of hMSCs, which aggregate upon centrifugation to form 3-D constructs. The aggregation process leads to a high cell density condition, which can cause nutrient limitations during long-term culture and, subsequently, inferior quality of tissue engineered constructs.
View Article and Find Full Text PDFUnlabelled: Current clinical methods to treat articular cartilage lesions provide temporary relief of the symptoms but fail to permanently restore the damaged tissue. Tissue engineering, using mesenchymal stem cells (MSCs) combined with scaffolds and bioactive factors, is viewed as a promising method for repairing cartilage injuries. However, current tissue engineered constructs display inferior mechanical properties compared to native articular cartilage, which could be attributed to the lack of structural organization of the extracellular matrix (ECM) of these engineered constructs in comparison to the highly oriented structure of articular cartilage ECM.
View Article and Find Full Text PDFNon-muscle myosin II (NMII) is reported to play multiple roles during cell migration and invasion. However, the exact biophysical roles of different NMII isoforms during these processes remain poorly understood. We analyzed the contributions of NMIIA and NMIIB in three-dimensional (3D) migration and in generating the forces required for efficient invasion by mammary gland carcinoma cells.
View Article and Find Full Text PDFTissue-engineered (TE) cartilage constructs tend to develop inhomogeneously, thus, to predict the mechanical performance of the tissue, conventional biomechanical testing, which yields average material properties, is of limited value. Rather, techniques for evaluating regional and depth-dependent properties of TE cartilage, preferably non-destructively, are required. The purpose of this study was to build upon our previous results and to investigate the feasibility of using ultrasound elastography to non-destructively assess the depth-dependent biomechanical characteristics of TE cartilage while in a sterile bioreactor.
View Article and Find Full Text PDFMicromachines (Basel)
March 2015
Tissue engineering is viewed as a promising option for long-term repair of cartilage lesions, but current engineered cartilage constructs fail to match the mechanical properties of native tissue. The extracellular matrix of adult human articular cartilage contains highly organized collagen fibrils that enhance the mechanical properties of the tissue. Unlike articular cartilage, mesenchymal stem cell (MSC) based tissue engineered cartilage constructs lack this oriented microstructure and therefore display much lower mechanical strength.
View Article and Find Full Text PDFTissue engineering is a possible method for long-term repair of cartilage lesions, but current tissue-engineered cartilage constructs have inferior mechanical properties compared to native cartilage. This problem may be due to the lack of an oriented structure in the constructs at the microscale that is present in the native tissue. In this study, we utilize contact guidance to develop constructs with microscale architecture for improved chondrogenesis and function.
View Article and Find Full Text PDFWhile the enhanced permeability and retention effect may promote the preferential accumulation of nanoparticles into well-vascularized primary tumors, it is ineffective in the case of metastases hidden within a large population of normal cells. Due to their small size, high dispersion to organs, and low vascularization, metastatic tumors are less accessible to targeted nanoparticles. To tackle these challenges, we designed a nanoparticle for vascular targeting based on an α(v)β(3) integrin-targeted nanochain particle composed of four iron oxide nanospheres chemically linked in a linear assembly.
View Article and Find Full Text PDFBackground: To examine the effect of the natural antimicrobial peptide human β-defensin-3 (hBD-3), on the migration of a head and neck cancer cell line in vitro using microfabrication and soft-lithographic techniques.
Methods: TR146 cancer cells were seeded in Petri dishes with microfabricated wells for cell migration assays. Total 54 cell islands were used of various shape and size and experimental media type.
Migration of cancer cells is a key determinant of metastasis, which is correlated with poor prognosis in patients. Evidence shows that cancer cell motility is regulated by stromal cell interactions. To quantify the role of homotypic and heterotypic cell-cell interaction in migration, a two-dimensional migration assay has been developed by microfabrication techniques.
View Article and Find Full Text PDFMechanical forces influence homeostasis in virtually every tissue [1, 2]. Tendon, constantly exposed to variable mechanical force, is an excellent model in which to study the conversion of mechanical stimuli into a biochemical response [3-5]. Here we show in a mouse model of acute tendon injury and in vitro that physical forces regulate the release of active transforming growth factor (TGF)-β from the extracellular matrix (ECM).
View Article and Find Full Text PDF